$ \definecolor{highIt}{RGB}{0, 180, 0} \newcommand{\HighLight}[1]{\textcolor{highIt}{#1}} $
$ \newcommand{\Complex}{{\mathbb C}} \newcommand{\Real}{{\mathbb R}} \newcommand{\Rat}{{\mathbb Q}} \newcommand{\Nat}{{\mathbb N}} \newcommand{\Int}{{\mathbb Z}} \newcommand{\sss}{\scriptscriptstyle} \newcommand{\dps}{\displaystyle} \newcommand{\intll}[1]{{\mathfrak{f}_{#1}}} \newcommand{\intul}[1]{{\mathfrak{g}_{#1}}} \newcommand{\hb}[1]{{\widetilde{#1}}} \newcommand{\bigc}{{\mathbb{A}}} \newcommand{\smallc}{{c}} \newcommand{\calO}{{\mathcal{O}}} \newcommand{\bigO}[1]{{\calO\!\left( #1 \right)}} \newcommand{\res}[1]{{\underset{#1}{\mathrm Res}}} \newcommand{\resn}[2]{{ \left\{ \res{#1}{#2} \right\} }} \newcommand{\de}[1]{\delta_{#1}} \newcommand{\deb}[1]{\hb{\delta}_{#1}} \newcommand{\der}[1]{\de{#1},\ldots,\de{k}} \newcommand{\debr}[1]{\deb{#1},\ldots,\deb{k}} \newcommand{\De}[1]{{\Delta_{#1}}} \newcommand{\Dep}[1]{{\De{#1}\cdots\De{k}}} \newcommand{\lambi}[1]{\lambda_{#1}} \newcommand{\lambib}[1]{\hb{\lambda}_{#1}} \newcommand{\lambip}{\lambi{\de{1}}\lambib{\deb{1}}} \newcommand{\reals}[1]{{\sigma_{#1}}} \newcommand{\realsb}[1]{{\hb{\sigma_{#1}}}} %\newcommand{\lbs}{{{\scriptstyle \blacksquare}}} \newcommand{\lbs}{{\varphi}} \newcommand{\Eindi}[1]{{\gamma_{#1}}} \newcommand{\sid}{{D}} \newcommand{\sidb}{{\hb{D}}} \newcommand{\tuple}[1]{{a_{#1}n\!+\!b_{#1}}} \newcommand{\ktuple}{{\mathfrak{L}}} \newcommand{\singse}{{\mathfrak{S}}} \newcommand{\bombxqa}[4]{{\mathcal{E}_{#1}(#2;#3,#4)}} \newcommand{\bombxq}[3]{{\mathcal{E}_{#1}^{\ast}\!\left(#2;#3\right)}} \newcommand{\bombA}{{\mathsf{A}}} \newcommand{\bombB}{{\mathsf{B}}} \newcommand{\bombq}[1]{{\frac{\sqrt{#1}}{\log^\bombB(#1)}}} \newcommand{\bombqa}[2]{{\frac{\sqrt{#1}}{{#2}\log^\bombB(#1)}}} \newcommand{\sumbomb}[1]{{\sum_{q\leq\bombq{#1}}}} \newcommand{\logf}[2]{{\log\!\dfrac{#1}{#2}}} \newcommand{\logfd}[3]{{\left(\logf{#1}{#2}\right)^{\scriptscriptstyle #3}}} \newcommand{\logat}{{\log^{\bigc}\!T}} \newcommand{\logNd}[1]{{(\log\!N)^{#1}}} \newcommand{\logzd}[1]{{(\log\!z)^{#1}}} \newcommand{\logdN}[1]{{\log^{#1}\!N}} \newcommand{\logdz}[1]{{\log^{#1}\!z}} \newcommand{\ze}[2]{{\zeta^{#2}({#1})}} \newcommand{\pfact}[4]{{\left( 1{#1}\frac{#2}{p^{#3}}\right)^{#4}}} \newcommand{\conmo}[3]{{{#1}\equiv{#2}\pmod{#3}}} \newcommand{\pprod}[1]{{p_1\!\cdots\!p_{#1}}} \newcommand{\aNover}[1]{{\frac{a_1N}{#1}}} \newcommand{\aaNover}[1]{{\frac{2a_1N}{#1}}} \newcommand{\zfp}[2]{{z^{\frac{#1}{#2}}}} \newcommand{\Nfp}[2]{{N^{\frac{#1}{#2}}}} \newcommand{\sitrun}[1]{z^{#1/\lbs}} \newcommand{\dote}{{\doteqdot}} \newcommand{\varL}{{\mathcal{L}}} \newcommand{\varR}{{\mathcal{R}}} \newcommand{\flip}{{[\sid\rightleftarrows\sidb]}} \newcommand{\vect}[2]{{\mathbf{#1_{#2}}}} \newcommand{\pvect}[1]{{\vect{p}{#1}}} \newcommand{\yvect}[1]{{\vect{y}{#1}}} \newcommand{\pntR}[1]{{\mathfrak{R}(#1)}} \newcommand{\psum}[1]{{\sideset{}{'}\sum_{f_{#1}(\pvect{#1})}^{g_{#1}(\pvect{#1})}}} \newcommand{\halfp}[1]{{\mathbb{H}_{#1}}} \newcommand{\result}[3]{{\lceil{#1}:{#2}\,,{#3}\rfloor}} \newcommand{\cinf}{{\mathcal{C}^{\infty}}} \newcommand{\ncr}[2]{{\mbox{\large$\mathrm{C}$}_{\sss #2}^{\sss #1}}} \newcommand{\sumii}[2]{{\sum_{\begin{subarray}{c} {#1}\\ {#2} \end{subarray}}}} \newcommand{\sumiii}[3]{{\sum_{\begin{subarray}{c} {#1}\\ {#2}\\ {#3} \end{subarray}}}} \newcommand{\sumiv}[4]{{\sum_{\begin{subarray}{c} {#1}\\ {#2}\\ {#3}\\ {#4} \end{subarray}}}} \newcommand{\sumv}[5]{{\sum_{\begin{subarray}{c} {#1}\\ {#2}\\ {#3}\\ {#4}\\ {#5} \end{subarray}}}} \newcommand{\prodi}[1]{\prod_{#1}} $
  1. In the thesis, the parameter $\lbs$ determines how big the support of the sieve is. The bigger the support, the better would be the results. The allowed values for $\lbs$ are related to our knowledge of the "level of distribution".

  2. On page 27, in the statement of Lemma 2.4.3, the imaginary parts of all of the domains should be truncated to $[-T_0, T_0]$, where $T_0 >0$ is an unspecified constant. For example, I should change

    $$ \prodi{i=1}^{2\kappa}\halfp{-a} $$

    to

    $$ \{\sigma+it: t\in[-T_0, T_0]\} \cap \left(\prodi{i=1}^{2\kappa}\halfp{-a}\right), $$

    and do the same thing for other domains in the statement. It is because in the proofs of Lemma 3.1.1 and Lemma 4.1.1, in which this lemma is applied, I need to ensure that the zeta function is in a zero-free region so that

    $$ \dfrac{1}{s\zeta(1+\lbs s)} $$

    on the domain of consideration is a $\cinf$-function. The truncation corresponds to this requirement.

  3. On page 44, in the proof of Lemma 2.5.5(b), it should be

    $$ \begin{eqnarray*} & & \sumbomb{x}\max_{(a,q)=1} \left| \sumiii{x<m\leq2x}{\conmo{m}{a}{q}}{\scriptsize{\mbox{$m$ not square free}}}h(m) -\frac{1}{\phi(q)}\sumiii{x<m\leq2x}{(m,q)=1}{\scriptsize{\mbox{$m$ not square free}}}h(m) \right|\\ &\leq & \sumbomb{x}\max_{(a,q)=1} \sum_{y<n\leq\HighLight{\sqrt{2x}}}\sumii{\frac{x}{n^2}<\HighLight{v}\leq\frac{2x}{n^2}}{\conmo{\HighLight{v}n^2}{a}{q}}\hspace{-0.3cm}1 + \sumbomb{x} \frac{1}{\phi(q)}\sum_{y<n\leq\HighLight{\sqrt{2x}}}\sum_{\frac{x}{n^2}<\HighLight{v}\leq\frac{2x}{n^2}}\hspace{-0.2cm}1 \end{eqnarray*} $$

    because $m$ can be a square of a prime and $n$ is treated as the least prime factor of $m$ such that $n^2|m$. The same result still follows, as the above is

    $$ \begin{eqnarray*} &\ll & \sumbomb{x} \sum_{y<n\leq\sqrt{2x}}\left(\frac{x}{n^2q}+1\right) + \sumbomb{x} \frac{1}{\phi(q)}\sum_{y<n\leq\infty}\frac{x}{n^2}\\ &\ll & \frac{x\log\!x}{y} + \frac{x}{\log^\bombB\!x} + \frac{x\log\!^2x}{y}. \end{eqnarray*} $$

    This is $\ll \dfrac{x}{\log^\bombA\!x}$ for suitable $\bombB$.

  4. On page 48, 2nd last line, I have used the following estimate:

    $$ \left| \frac{1}{\ze{1+\lbs s_i}{}} \right| = \left| \sum\frac{\mu(n)}{n^{1+\lbs s_i}} \right| \leq \sum\frac{1}{n^{1+\lbs \reals{i}}} = \ze{1+\lbs \reals{i}}{}. $$

  5. In the proofs of Lemma 3.1.1 and Lemma 4.1.1, I have used the following estimate: there exists an absolute constant $C_0$ such that

    $$ \left| \frac{1}{s\ze{1+\lbs s}{}} \right| \ll\left\{ \begin{array}{rcl} 1 & \mbox{for} & |t|\leq C_0 \\ \frac{\log|t|}{|t|} & \mbox{for} & |t|>C_0. \end{array}\right. $$

    For small $|t|$ it is because the zeta function is in a zero-free region, while for large $|t|$ it is because of Lemma 2.3.3.

  6. On page 61, in the statement of Theorem 3.3.2, the implied constant should depend on $\eta$ too. It is because when I use Lemma 3.3.1 in the proof, I have used the estimation

    $$ \bigO{ \dfrac{1}{Y(\log N)} } \ll_\eta \dfrac{1}{(\log N)^{1.5}}. $$

    This mistake should be immaterial to the main results of the thesis.

  7. In the first equation on page 65, the following highlighted conditions are dropped:

    $$ \begin{eqnarray*} Q_2 \; & \dote & \sumii{a_1N<\ell\leq2a_1N}{\HighLight{(\ell, A)=1}} \frac{\Eindi{2}(\ell)}{\phi(a_1)} \sumii{\de{2},\deb{2}}{(\De{2},A\ell)=1} \dfrac{[\lambi{1}\lambib{1}]} {\phi(\De{2})}\\ & & + \sum_{Y\!<p_1\leq\sitrun{1}} \sumii{\aNover{p_1}<\ell\leq\aaNover{p_1}}{\HighLight{(p_1\ell, A)=1}} \frac{\varpi(\ell)}{\phi(a_1)} \sumii{\de{2},\deb{2}}{(\De{2},Ap_1\ell)=1} \dfrac{[\lambi{1}\lambib{p_1}+\lambi{p_1}\lambib{1}+\lambi{p_1}\lambib{p_1}]} {\phi(\De{2})}. \end{eqnarray*} $$

    It is because every prime factor of $\pprod{r}\,\ell$ is greater than $Y$, so the conditions are satisfied automatically.

  8. On page 70, I say that the number of non-zero $\lambi{}$ is about $N^{0.4}$, which may be confusing. I have been conceptualizing $\lambi{}$ as a multiset, so what I refer to is the number of elements of the multiset

    $$ \left\{ \lambi{\de{1},\de{2}}^{\mathbf{\sid}}: \;\; \de{1}, \de{2}\in\Nat, \;\; \lambi{\de{1},\de{2}}^{\mathbf{\sid}} \neq 0 \right\}. $$

    Using the set notations, this number is just

    $$ \# \left\{ (\de{1}, \de{2})\in \Nat^2: \;\; \lambi{\de{1},\de{2}}^{\mathbf{\sid}} \neq 0 \right\} =: C_0. $$

    The size $N^{0.4}$ is due to the following estimates. On the one hand,

    $$ C_0 \leq z^{1/5}\cdot z^{1/5} \leq N^{1/5}\cdot N^{1/5} = N^{0.4}. $$

    On the other hand, as square-free integers have density $6/\pi^2$, we have

    $$ C_0 \gg z^{1/5}\cdot z^{1/5} \gg N^{0.4-\varepsilon}. $$

  9. On page 100, 3rd-to-last line, instead of

    $$ f_0(\yvect{i})<y_i\leq g_i(\yvect{i}), $$

    it should be

    $$ f_{i-1}(\yvect{i-1})<y_i\leq g_{i-1}(\yvect{i-1}). $$

    The same mistake occurs on page 106, line 6. It should not affect the proofs.