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Let ¢ > 1and D = {0y, ..., 0} be a set of real numbers such that 0 < 9;11—0; <
(Om—00)/(q—1) for all 0 < i < m—1. The pair (¢, D) can be treated as an iterated
function system or a numeration system. This thesis investigates when & = (¢, D)
satisfies the finite type condition (FTC), that is, when the set

{Zqi(si —ti) . n Z O, Si,ti € D}
=0

has no accumulation point. It is proved that

[ If 1 < m < 3 and & satisfies the FTC, then ¢ is a Pisot—Vijayaraghavan
number (PV number).

II. If m = 4 and ® satisfies the FTC, then every algebraic conjugate A of ¢ with
|A| > 1 is not a real number.

III. For each m > 4, there exists ® satisfying the FTC, and the associated ¢ is not
a PV number.
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Aussi, si elle m’était laissée assez longtemps pour accomplir mon ceuvre,
ne manquerais-je pas d’abord d’y décrire les hommes, cela dit-il les
faire ressembler a des étres monstrueux, comme occupant une place
si considérable, a coté de celle si restreinte qui leur est réservée dans
I’espace, une place au contraire prolongée sans mesure puisqu’ils touchent
simultanément, comme des géants plongés dans les années a des époques,
vécues par eux si distantes, entre lesquelles tant de jours sont venus se
placer — dans le Temps.

Marcel Proust, A la recherche du temps perdu: Le Temps retrouvé

But at least, if strength were granted me for long enough to accomplish
my work, I should not fail, even if the effect were to make them resemble
monsters, to describe men first and foremost as occupying so considerable
a place, compared with the restricted place which is reserved for them in
space, a place on the contrary prolonged past measure, for simultaneously,
like giants plunged into the years, they touch the distant epochs through
which they have lived, between which so many days have come to range
themselves — in Time.

Marcel Proust, In Search of Lost Time: Time Regained
(Translated by Andreas Mayor and Terence Kilmartin)



Chapter 1

Background

1.1 Prolegomena

In the field of fractal geometry, a central theme is to study the dimensions of fractals
[18]. Roughly speaking, fractal dimensions are non-negative real numbers general-
izing the notion of dimensions of familiar geometric objects (e.g. straight lines,
surfaces) to fractal sets, giving quantitative descriptions of how the space is occu-
pied [1§]. Usually, the estimation of dimensions is not an easy task. Noting that
a large class of interesting fractals, including the middle third Cantor set, the von
Koch curve, and the Sierpinski gasket, can be constructed by using iterated function
systems (IFS), mathematicians find that if an IFS satisfies certain separation condi-
tions, then an understanding of the associated fractal and its dimensions follows. An
example of such conditions is the finite type condition (FTC). If an IFS satisfies the
FTC, then the associated fractal will only repeat finitely many overlapping patterns
in all scales. Therefore, we are able to reach an understanding of the fractal by a
finite number of steps.

The FTC also plays a role in the study of numeration systems (also called
number systems) in number theory and computer science. We are used to rep-
resenting real numbers by decimal expansions, which use § = 10 as the base and
D=14{0,1,2,3,4,5,6,7,8,9} as the set of digits. If we call (5,D) a numeration sys-
tem, then as a generalization, different 5 and D may also be used. The new system
obtained may or may not possess the same properties as the ordinary decimal system
does, and the resulting expansions are called S-expansions in the literature. Noting
that the decimal expansion of a real number can be obtained by an iterative algo-
rithm, we see that each numeration system corresponds to an IFS on R. It follows
that if an IF'S on R satisfies the FTC | then we immediately have an understanding
of the structure of the associated numeration system.

In view of the above discussion, it is natural to ask: What are the necessary and
sufficient conditions for an IFS to satisfy the FTC? Are there any simple criteria
or algorithms for verifying if an IFS satisfies the FTC? Up to now, the existing
literature only provides partial answers to these questions, and it is observed that
Pisot—Vijayaraghavan numbers (PV numbers for short) may play a crucial role in
this problem (a PV number is a real algebraic integer which is strictly greater than
1, while all of its algebraic conjugates have absolute values strictly less than 1).
Although there are examples showing that the involvement of PV numbers is not
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necessary for the FTC (e.g. [40, Example 5.5]), all of them have holes in their
“attractors”. On the other hand, it was found that for some class of IFS on R without
hole in their attractors, the necessary and sufficient condition is that the parameters
involved must be PV numbers [, 22]. Does the same hold for a wider class of IFS
on R? If not, then how do we construct counterexamples and how do they look like?
To date, there are only a few literature on this problem, and the results obtained
still do not provide a complete picture. In view of the relationship between this
problem and the study of fractal geometry, number theory and computer science, a
further investigation of the issue should be beneficial.

1.2 Purpose of the research

We consider a class of homogeneous iterated function systems (IFS) on R having

the form @d:ef{px—l—ci};io with 0 < p <1, ¢cg < ¢ < -+ < ¢y, and the attractor
being a closed interval [L, R], so that

(L, R] = JIpL + ci, pR+cil.

=0

This implies
(i) pL + civ1 < pR+ ¢;, whence ¢;41 — ¢; < p(R — L);

(ii) co=(1—p)L and ¢, = (1 — p)R.

Let ¢ = ¢(©) &1/, Do X {ge;}™y, (Do — Do) {6, — 6, : 61,6, € Do}, and

Y@d:ef{Zqisi:nZO, S € (D@—De)}-

=0

In view of numeration system, we may call ¢ a base, Dg a set of digits, and Yg the
associated spectrum. We say that © satisfies the finite type condition (FTC) if Yo
has no accumulation point in R (c.f. [22, Lemma 2.1]). The purpose of the research
is to investigate what characterize the FTC for this class of IFS. In particular, we
are interested in whether ¢ has to be a PV number.

We simplify the setting by the following normalization process. Let ® be the

IFS
(1-p) .

def
oL i —
{px + (¢; — ¢o) E——

We have

(b) bip1 —b; < p(R — L)% = p;

(¢) [0,1] =UiZolp- 0+ bi; p-14bil.
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In addition, if Y3 has no accumulation point in R, then so does Yg, and vice versa.
As a result, we can restrict our attention to the class of IFS satisfying condition (a),
(b), (c).

It is hoped that through the research, the following objectives can be achieved:

1. To establish some necessary and sufficient conditions for this class of IFS to
satisfy the FTC. In particular, to understand what the role of PV numbers is
in this problem.

2. To obtain some simple criteria or algorithms for verifying if an IFS of this
class satisfies the FTC.

3. To investigate if there are examples of IF'S of this class which satisfy the FTC
but use non-PV numbers as parameters, and to understand why such examples
exist or do not exist.

1.3 Main Results and the thesis structure

The starting point of the research is the following findings by Feng (personal com-
munication, 2018):

Theorem 1.1 (The IFS has algebraic parameters)

If ® satisfies the FTC, then q is an algebraic integer, |A| < q for all algebraic
conjugate A of q, and b; € Q(q) = Q[q] for all i.

Here Q(q) denotes the smallest field containing ¢ and the rational numbers Q, and
Ql[q] the ring generated by ¢ over Q. Feng (personal communication, 2018) also
suggested that the work [l] by Akiyama and Komornik could be useful. It is indeed
so. Based on the aforementioned work, as well as an earlier work [[17] by Erdds
and Komornik, we are able to say something about our objectives. Recall that
#® = m + 1. In this thesis, we demonstrate:

Theorem 1.2 (Main result)

[. If 1 <m <3 and @ satisfies the FTC, then q is a PV number.

II. If m = 4 and ® satisfies the FTC, then for any algebraic conjugate A of q,
|A| > 1 only if A is not a real number.

ITI. For each m > 4, there exists ® satisfying the FTC, and the associated q is not
a PV number.

To establish this result, we handle the real and complex algebraic conjugates of
q separately. We show that:

Theorem 1.3 (Real cases)

Let A be a real algebraic conjugate of q. If ® satisfies the FTC and m < 4, then
|A| < 1.
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Theorem 1.4 (General cases)

Let A be an algebraic conjugate of q. Suppose one of the following holds: (i)
bi /by € Q for all i; (it) m < 3. If ® satisfies the FTC, then |A| < 1.

Observe that items I and II of the main result follow from them. Note also that
Theorem @(1) includes the case {b;}\", = {(1 — p)i/m}", when (1 —p)/m < p.
This situation was considered in [[, 22].

We indeed have more detailed results for the real cases. Let @d:efbiq, so that
¢ = {pz + 0;p}.-,. Given an algebraic conjugate A of ¢, let o4: Q[¢g] — Q[A] be
the field isomorphism which maps ¢ to A and leaves Q fixed. When A € R, the order
relation of {o4(0;)}i, gives rise to a permutation P = P(A) of {m, m — .,0}.
Using a code (i, - - - i) to represent it, we have:

Theorem 1.5 (Forbidden patterns)

Let A be a real algebraic conjugate of q. Suppose @ satisfies the FTC. If the code
representation of P = P(A) is in one of the following patterns, then |A| < 1.

Pa-l) (---0) or (---1) or (---m).

(
(Pa-T") (m---) or {((m—1)--+) or (0---).

(Pa-II) (bo---m---(ly+1)---) for some 0 < {y < m — 2.
(Pa-IT") (-+-ly---0---(by + 1)) for some 1 < ly <m — 1.

(-«--(lo+1)---m---Ly---) for some 0 < {ly <m—1, at the same time
(Pa-III) < (---m---j--+) for all0 < 5 <4y, and

(c-jeome-) forallbo+1<j<m.
(Pa-IV) (g 0---(by+1)---m---) for some 0 < {y < m — 2.
(Pa-IV') (---0---Ly---m (by + 1)) for some 1 < o < m — 1.

Theorem 1.6 (“125034”)

Let m = 5. Let A be a real positive algebraic conjugate of q. If ® satisfies the FTC,
then either |A| < 1, or P =1P(A) has code (125034).

Theorem 1.7 (“120534”)

Let m = 5. Let A be a real negative algebraic conjugate of q. If ® satisfies the FTC,
then either |A| < 1, or P =P(A) has code (120534).

As Theorem @ suggests, we study pattern-avoiding permutations given by the
real numbers {04(9;)}.-, for the real cases.! To deal with complex algebraic con-
jugates, on the other hand, we study pattern-avoiding configurations® given by the
planar point set {o4(9;)};~,. We manage to handle this more complicated problem
for m < 3. We note that m = 3 and m = 4 are the most intractable cases in this

!The term “forbidden pattern” and “pattern-avoiding permutation” come from combinatorics.
See e.g. [4] and [b6, Chapter 1].

2The author coins this term to extend the notion of “pattern-avoiding permutation” to finite
point sets in R2. See e.g. [42] for an introduction to the study of finite point configurations.
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research: they are the cases from having a proof to having a counterexample of the
necessity of ¢ to be a PV number.

In contrast to items I and II, item III of the main result is demonstrated by using
many concrete examples, which are discovered by educated guess and computer
experiment. We present:

Theorem 1.8 (Examples)

There exists ® satisfying the F'TC but the associated q is not a PV number. Using
A to denote an algebraic conjugate of q, we have the following examples.

. Arbitrary m > 5, m odd, and A € RN (1,q).

II. Arbitrary m > 5, m odd, and A € RN (—q,—1).
III. Arbitrary m > 6, m even, and A € RN (1,q).
IV. m =4, |A] > 1.

V. m=4,|A| =1

The above represent our major findings. We should not forget to mention an
equivalent formulation of the FTC in terms of the density of Y, which was given by
Feng [22] through an argument by Drobot [15].

Theorem 1.9 (Density of Y and FTC)
® satisfies the F'TC if and only if Y is not dense in R.

We also remark that in regard to Theorem , Feng (personal communication,
2021) has proved a stronger result that ¢ is indeed a Perron numbert. As the proof
is involved, we shall not present it for the sake of simplicity.

Xk ok ok ok ok ok ok ok

We develop the thesis as follows.

e In Chapter E, “Preparation”, we prepare the tools for proving our results.
Notation is introduced and the essence of our approach is demonstrated.

e In Chapter , “Real cases”, we prove our results for the real cases (Theorem B,
—). The establishment of the theorem of “125034” (Theorem ) is a
milestone of the research, as it not only reveals the possibility that ¢ need
not be a PV number, but also sheds light on how to construct examples. We
reveal one such IFS and its properties in an interlude.

(Theorem [1.4). In particular, we engage in the intractable case m = 3. Also,
as a byproduct, we give an isolated result of pattern-avoiding configurations
for discrete geometry.

e In Chapterﬂ, “General cases”, we prove the theorem of the general cases

3A Perron number is a real algebraic integer which is strictly greater than 1, while all of its
algebraic conjugates have absolute values strictly less than it.
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o In Chapter H, “Examples”, we demonstrate our examples (Theorem ) As
the examples for m = 4 play a crucial role in the completeness of our main
result, we shall explicate how we discover them. This is the final chapter and
we finish by giving miscellaneous results inspired by the examples.

e There are three appendices. In Appendix @, we_introduce terminology con-
cerning the FTC and give a proof of Theorem and respectively. In
Appendix E and ((J, we list some programming codes and output, which are
related to the computer experiment of this research.

A word on style. As shown in this section, we shall try to give a caption to every
result in this thesis (theorem, lemma, corollary, etc). This is inspired by the writing
of Terence Tao.

We finish this chapter by a literature review which can be skipped by the reader.

1.4 Literature review

Various separation conditions for IF'S having overlaps are proposed in the literature,
and the FTC is one of them. These conditions are considered because without
imposing certain restriction on the overlapping behavior of the IFS, the analysis of
dimensions and multifractal structure is intractable. See [[14] for a survey of these
conditions. It was shown in [22] that for the class of IFS studied in this research,
the FTC is equivalent to the weak separation condition discussed in [3§]. In other
words, the spectrum Y has no accumulation point in R if and only if 0 is not an
accumulation point of Yg.

The work [} by Akiyama and Komornik implies that for the IFS

?

@::{px—l——(l—p): Ogigm},
m

Ys has no accumulation point in R if and only if ¢ := p™! > m + 1 or ¢ is a PV
number. Based on this result, Feng [22] subsequently showed the corresponding
result for the density of Yg. These findings suggest that the involvement of PV
numbers as parameters seems to play a crucial role in determining whether an IFS
can_behave in a tidy way. Many research papers reveal this phenomenon (e.g.
[, 10, 17]) or make use of it (e.g. [23, 26, B6, 40]).

In respect of the necessary and sufficient conditions for the class of IFS under
consideration to satisfy the FTC, it is known that if ¢ is a PV number and all
of the translation parameters b; are in Q|g], then the IFS satisfies the FTC [40]
(see also [22, Theorem 1.11]). On the other hand, Feng (personal communication,
2021) found that if the FTC holds, then ¢ must be a Perron number and all of the
translation parameters b; are in Q[¢q]. Although methods of checking whether an
algebraic integer is a PV number exist in the literature (e.g. [0, 9]), it seems that in
this research they cannot be applied directly.

With respect to the study of fractal geometry, we note that an IFS satisfying
the FTC has a remarkable feature: it allows a scheme to compute the Hausdorff
dimension of its attractor [40] (see [31, B6, 45] for some special cases). Also, for a
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homogeneous IFS on R, the FTC implies the multifractal formalism holds for the
associated self-similar measures [20, 21].

It is noted that the FTC can be destroyed by a small perturbation of parameters
[40]. Therefore, using a computer program to search for IFS satisfying the FTC could
be infeasible. Even if an IFS satisfies the FTC so that the number of “neighborhood
types” is finite, this number can still be very large (e.g. 4017 in an example of
[B6]). Without an upper bound of such number, computer could only offer limited
assistance in this study.

On the number-theoretic side, researchers of numeration systems investigate is-
sues of unique expansions, finite expansions, periodic expansions, universal expan-
sions, etc, as well as topology properties such as discreteness and denseness of the
associated spectra. Ergodic theory also plays a role because when generating an
expansion by greedy algorithm for example, we make use of a piecewise linear ex-
panding map on the unit interval. Properties of such map have been well-studied in
the literature (e.g. [37]).

Rényi [46] and Parry [43] are pioneers of the number-theoretic and ergodicity
aspects of the issue. They considered non-integer bases and integer digits, founding
the theory of [-expansion. Since then, a lot of research has been done on this
topic, see for instance [[13, 17, B3, B4, b0, b2, 55, 57]. There are also studies dealing
with integer bases and non-integer digits (e.g. [L1, Bl, 41]). Expansions using
two bases (corresponding to non-homogeneous IFS with two contractions) are also
considered [B9]. However, it seems that unlike the fractal geometry side, on the
number-theoretic side there is only limited research on both non-integer bases and

digits. [12, B5, B6] are some examples.

Besides the base-digit construct, the terms “numeration system” and “number
system” indeed have various meanings in the literature, see e.g. [2, B, b, 24, 27,
28, 29, B0, 48]. A common feature among them is a systematic way to represent
numbers by words of finite or infinite length.

Topics relevant to this research include: polynomials with coefficients from a
finite set [§]; eigenvalues of non-negative matrices [32]; Rauzy fractals and central
tiles [p3]; Salem numbers [54]; morphic words and substitutions [47]. For related
topics in algebra, see for instance [[16, 19, 49]. For a glimpse of how this problem is

related to computer science, see e.g. [, 25, 27, 44, 47, 48].

Finally, we note the following convention of the symbol used: the base is usually
denoted by 3 or ¢ in the literature. The letter [ is originated from Rényi and is used
by papers dealing with ergodic and probabilistic aspects of the issue, while papers
dealing with combinatorial and topological aspects use the letter ¢, following Erdos
and his collaborators [[13].
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Chapter 2

Preparation

In this chapter, we prepare ourselves for proving the main result. In Section El! we
introduce the notation and conventions used throughout the thesis. In Section @,
we establish some preliminary results and illustrate the essence of our approach.

2.1 Notation and conventions

Let 0 < p < 1. We consider the IFS <I>d:ef{g0i(x) = px + b}y, where 0 = by <
by < -+ <by, =1—p,and bjy1 — b; < p for all i (we call this the overlapping
hypothesis). Let qd:efl/p. Assume ¢ is an algebraic integer and b; € Q(q) = Q[¢]
for all 4, so that b; = g;(¢) for some g;(z) € Q[z]. We also assume that ¢ ¢ N, and if
A is an algebraic conjugate of ¢, then |A| < ¢. We make these assumptions in view

of Theorem (p-B)-
Define D(z) C Q[z] by D(z) & {xg;(x)}",. Let

Yd:ef{Zq"si n>0,s € (D(q)—D(q))}.

We say that & satisfies the FTC if Y has no accumulation point in R (c.f. [22,

Lemma 2.1]). Let Yeore “yn (0,1]. We note that ¢ satisfies the FTC if and only if

Yeore s a finite set [22].

Given any finite set E = {01,...,0.} of real numbers such that §; < d < -+ <

01, we define 5Z-+1(“E) = 9;, 5,9 = —00. For brevity we shall also write ;% when
the underlying set E is clear. Let EX™" &' E\ {minE}, so that for all § € E*™®  we

have 0 < § — & < co. Let
gapmax(E) d:efmax {5 — 5$ = EXmin}

denote the maximum gap between consecutive elements of E.

We shall use the Vinogradov notation. Given functions h,k : X — [0,00), we
write h < k if there exists a constant C' > 0 such that h(z) < Ck(z) for all z € X.
Write h < kif h < k and k < h.

When using the summation notation Ets, we treat it as an empty sum if the
upper limit ¢ is less than the lower limit s. For instance, we take Z?=1 gt =0.

9
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We use Dr(€) to denote the closed disc with center £ and radius R in the complex
plane. In particular, D;(1) = {z € C: |z — 1] < 1} is a disc lying entirely in the
closed right half plane.

Given an algebraic conjugate A of ¢, define o4: Q[¢] — Q[A] to be the field
isomorphism which maps ¢ to A and leaves Q fixed. In addition, given a nonzero
complex number tvo € C \ {0}, define for each non-negative integer ¢ > 0 the set

Liam) & 5 € -0y 0 (Z0%) 20 }.

We shall also write L, for Ly(A, o) when A and o are clear from the context.

We give a code representation to each L,(A,w). Write CIDd:Of{pm + O0ip}it,, SO
that D(q) = {0;};~,- Suppose iy, - - i is a permutation of m - --0 such that

O'A(aim)m UA(aim_l)m (8 )m
w (PG ) o (PO o (TR
where if R (04(0;,)0/A%) = R (04(9;, ,)w/A"), then we require i, > iy_1. By

defining
[ ]defa . @,

we see that Ly(A,w) = {[is; 4] : m > s >t > 0}. In this way, we say that L,(A, )
has code (ipim_1---ip). For example, when m = 3 and L,(A, w) has code (2301),

then
() () x () (24)

and Ly(A,w) = {0,[2:3].[2:0]. [2:1] . [3:0] . [3:1] . [0: 1)}
Associated with a given IL,( A, ) which has code representation (i, - - - iy), letting
Hy =i, (the “head”) we define

def

HZ - H+(A m) {[valt] mz=tz=> 0} {[Hﬁa Hv
H, = H[(A,m) = {[is;Hg] :m > s> 0} :{[*;Hg]},
and letting T) = iy (the “tail”),
Ty =T} (A v0) ={[is; T : m > s > 0} = {[x 1]},
def

T, =T, (A w) & {[Tyi] :m >t >0} L {[T,: #]}.

Note that H}, T, C L, and —H,,—T, C L,. When A is a real algebraic conjugate
of ¢ and to = 1, the set Ly can be described simply. Define

P =P(A) = Ly(A,1) = {3 € (D(g)—D(q)) : 4 (6) > 0}.

When A is positive, we have L, = IP for all £ > 0, while when A is negative, we have

P if ¢ is even
L,=
—P if ¢ is odd.

We end this section by the following observation:
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Observation 2.1 (Appeal to symmetry)

Let A be a real conjugate of q. If ® satisfies the FTC and P = P(A) has code
(i -+ -i0), then ® d—j{px + (1 —p—b)}_, also satisfies the FTC, and the associated
P(A) has code ((m —ig) -+ (m — ip)).

2.2 Preliminary results and the essence of the
approach

We begin with the following proposition, which is an extension of [17, Lemma 1.4].

Proposition 2.2 (Consequence of FTC)
Let ug > 0 be an integer and {s;(x)};=_. C (D(x)—D(x)). Let A be an algebraic
si(q

i=—ug

conjugate of q. Suppose @ satisfies the FTC and Zoo ‘(i) = 0. We have

(a) {qn > %} is a finite set.

n>0

(b) {A }n>0 is a finite set.

—uQ At

(c) If|A| > 1, then 3% AZ ) — 0.

Proof
Sz(q n n
By >2%, s~ = 0, we have |g > q ol q.
accumulation point in R, we get (a). As a result, there exist ny,...,ny > 0 such
that
W Si(a) o X 56(0) e e 5i(4)
4 — q — q
uo n>0 uo uo

Hence, given any N > 0, there exists n; such that ¢ Z o q = qu " ” q
Note that 2™ " Zw—f € Qlz] for all n > 0. Therefore, since A is an algebraic
conjugate of g, we have AV ZNUO Al = A" Zﬁ]uo s’lgf‘ , whence

ZA nlnlsz‘A nknkSZ‘A
{A”Z ﬁxz)} :{A ) %,...,A > ixz‘)}’

—uo —uo

5:(4)
P

< |A|™" — 0 as n — oo, which shows (c).

and (b) follows. In particular, < 1. Hence, if |A] > 1, then

n
—ugQ A’L

Q.E.D.
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Next, we present a lazy algorithm which is inspired by [17, Lemma 1.6-1.8].

Proposition 2.3 (Lazy algorithm)

Let {E;};°, be a sequence of finite sets of real numbers. Suppose there is a constant
C > 0 such that —C' < minE; < maxE; < C for alli > 1.

Let Y2, pi be a convergent series, wherep; > 0 for alli. Letxz <> (maxE;)p;.
Define t; € E; inductively for all © > 1 as follows. Let j > 1 and suppose that t; is
already defined for all 1 <1 < j. Then define t; :== 6, where 6 € E; satisfies

Z tip; + 5(“Ej)pj + Z (max E;)p; <z < Z tipi + 0pj + Z (max E;)p;

1<i<j—1 i>j+1 1<i<j—1 i>j+1

We have

(i) = <Y T tips.
(i) Ift; # minE; infinitely often, then x = Z‘;o tip;.

(iii) Suppose for all ¢ > 1, we have

o0

(21) gapmax(E2> < p[l Z (max E; — min EZ)pZ
i=0+1

Then for all x € [> 7 (minE;)p;, > = (maxE;)p;], this algorithm gives x =

> tipi

Proof

(i) For all j > 1 we have x < Zjl tipi + > 0

;o1 (maxE;)p;. Letting j — oo we get
the result.

(ii) Suppose t; # minE;. Then x> 3" ., tipi + tjpj + 2 s (max E;)p; with
tj- € E;. Therefore, if ¢t; # min E; infinitely often, then letting j — oo through
these indices we have x > >~ t;p;. Together with (i) we get x = > t;p;.

(iif) If on the contrary x < Y [°t;p;, then by part (ii) all but a finite number of
t; equal minE;. It is impossible that t; = minE; for all « > 1, for otherwise
T <Y tipi =7 (minE;)p;, contradicting the hypothesis on z. Hence there
is a last index j > 1 such that ¢; # minE;. Then

thpri-tgpj-i-z (minE;)p Zt@pl>x>2t2p@+tpj+z (max E;)p

Jj+1 j+1

However this contradicts (@)
Q.E.D.
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The following result describes the sets ]I-]Iz)t and ']I‘f

Lemma 2.4 (Structure of H}t, T}t)

For any algebraic conjugate A of q, and any nonzerovo € C\{0}, with L, = L,(A, w),
Hf = HF (A, 1), Tf = T; (A, w), the following hold.

(2) gaPmax(HF), gapmax(T7) < 1.

(b) maxHF — minHF = ¢ — 1 = max TF — min T7.

Proof

Suppose L, has code (i, - --ig). Write
HS = {[im; 0], [im; 1] 5 - oy [ Gm— 1], 0, [ Gm A1), [ tm+2] - - o, [im; m] } -

For 0 := [ipm;j] € Hf with j < m, we have § — 0V = [i,:5] — [im;j+ 1] =
[j +1;j] < 1 by the overlapping hypothesis. Also, maxH, — minH, = [i,,; 0] —
lim;m] = [m;0] = ¢ — 1. The sets H,, T}, T, can be studied similarly.

Q.E.D.

Our approach is inspired by [l]. Let us illustrate it by proving a result for a
special case.

Proposition 2.5 (Special case “340512”)

Let m =5 and A be a real negative algebraic conjugate of q. Suppose @ satisfies the
FTC and P =P(A) has code (340512). Then |A| < 1.

Proof

It is proved by contradiction. Suppose on the contrary A € [—q, —1). Let y := [3;2].
The code (340512) implies o4(y) > 0 and 04(y) > oa([s;t]) for all s,¢. Note that
y # 1, for otherwise 1 = 04([3;2]) > 04([0;5]) = |4 —1| > 1. Hence y € (0,1) by
the overlapping hypothesis. Taking to := 1, L; = L;(A,w) and H; = H; (4, o), we
let kg = ko(y) be the smallest non-negative integer such that

k 00 _
yﬁzoq;il—i- Z maz;Hi'
i=1

i=ko+1

1 ifky =
Let k) := o _O . We now define for each i > kj a set E; C (D(¢q)—D(q)).
ko otherwise

If kg = 0, then we define E; := H for all + > k. Else if ky > 1, then we define E;

{[5;0],[5;1],1[5;2],[4;2],[3;2],0} =: S_ if i = k§ and k{ is odd
E; == < {[5:0],[4;0],[3;0],[2;0],[1;0],0} =S, if i =k} and & is even
H; if 1 > kg.



14 Chapter 2. Preparation

Noting that ¢ — 1 € S, we have
ki—1

y_zq—l <§:ma§Ei'

)
1=k q

As 0 € H; and minS; <0, by y > 0 and the definition of ky we also have

ki—1 0 itk =0
q—1 k—l k-1
— . 00 H 0 -1
= =1

k* g

>

i
k* q

0

.

Moreover, we have

i Z max E; — minE;

gaPmax (EZ) S

=041 ¢
for all ¢ > k§, by using the definition of S; and the structure of H; (Lemma @ .
Thus, our lazy algorithm (Proposition @) applied to z :=y — Zko te 11’ gives
ko—1 g— 1 00
-y =3
1 i—ks

with ¢; € E; for all i > kj. Noting that y € Y and |A| > 1, we have

ko— 00
0 1A—1+ oa(t)

Al Al
=k,

(2.2) oaly) =

as a consequence of the FTC (Proposition @)

We now show that this is a contradiction. Recall that o4(y) > o4([0;5]) > 0
and —H; CL;. If ky =0, ther@y (@), 0<oaly) =2 0at;)/A" <0, giving a
)

contradiction. Else if kg > 1, ( gives
ko—1
(A—l) O'A(tk ) 1 O'A(tk )
(2.3) oa(y) < Z " Akoo =1- Ako 1 Akoo '

i=1
Suppose ky is odd first, so that Ey, = S_. By the definition of S_ and the code

of P, for any ¢ € Eg,, da(d) < 0 only if 6 = [5;0]. Consequently, it follows from
oa(y) > 04([0;5]) and (R.3) that

1 oa([5;0]) 1

At T ST A S
whence —1 < A, which is a contradiction. Therefore, kg is not odd but even, so that
Ey, = S;. By the code of P, we see that maxEy, = [3;0]. Since o4(y) > 04([3;5]),
&3

gives

1 - A=04([0;5]) < oaly) <1-

1 O'A(ag)

04(05) = (A=1) = 0a([3;5]) S 0aly) <1 - o= + —
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Noting that o4(0d3) > 0 by the code representation of P, the above gives

1
OSO’A(83>(1_%)§A—W<—1+1:O

This is a contradiction and completes the proof.
Q.E.D.

In the same spirit, we prove the following result.

Proposition 2.6 (Sufficient conditions for |A| < 1)

Let A be an algebraic conjugate of q. Suppose ® satisfies the FTC. Also, suppose
the following hold:

1. There existsy € Y N (0,1) and wo € C\ {0} such that R (c4(y)r) < 0.

2. For each £ > 1, we have R <Zz 1 m;?“’) > 0.

3. For each € > 1, there exists Sy C (D(q)—D(q)) such that
(a) g—1€S; and minS, < 0;
(b) gapmax(Se) < 1;
(c) for all § € Sy, at least one of the following holds:
i R(walm) > iii. R (caly)w)] > [ (25|
i, R (alde) > 3%(“‘ Bl ) v, ére(z‘f;ll (Ao "A(‘”“") > R (oaly)w).

1

Then |A| < 1.

Proof

It is proved by contradiction. Suppose on the contrary |A| > 1. Take L; = L;(A, )
and H = H; (A, w). As y € (0,1), let ko be the smallest non-negative integer such
that

ko fe’e) +
qg—1 max H;
y < E —+ E —.
= 4 izkot1 1
1 ifk=0
Let kf = o .. For each i > kj, we define a set E; C (D(¢)—D(q)). If

ko otherwise
ko = 0, then we define E; := H:r for all 7 > kj. Else if ky > 1, we take

HS if i > k.
Since g — 1 € Sks, 0e H;L and min S’fé < 0, by the definition of ky we have

ki—1 00

imi;Ei<y_Zq—1 ZmaXE

i=k i=1 i=

0
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Also, by hypothesis 3(b) and the structure of H; (Lemma @), condition (@) of
our lazy algorithm (Proposition R.3) is satisfied. Therefore, applying that result to
ri=y— Zlfo_l =Ll we get

ko— 1q_1 0o
(R

with ¢; € E; for all ¢ > kj. As y € Y, it follows from the FTC and Proposition @
that

A1 S oalt)

Al Al
=k

(2.4) oaly) =

We now show that this is a contradiction. By hypothesis 1, we have & (o 4(y)10) <
0. Since H C L;, so if k, = 0, then by (R.4), we have 0 > R (ca(y)w) =
Yoo R (oa(t;)ro/A") > 0, giving a contradiction. Else if kg > 1, (2.4) gives

0> R (oa(y)w) > R (2 (A%)m> +R (“S—‘;)m) .

i=1

Since tg, € Sy,, the last expression is

R (St (A 1)m) if ¢y, satisfies hypothesis 3(c)(i)
>R Z (A Dm) if ¢y, satisfies hypothesis 3(c)(ii)
R (St (A4 Dm) +R (UAX,fg)m) if ¢y, satisfies hypothesis 3(c)(iii) or (iv).

The first and the second are > 0 by hypothesis 2, which contradict R (o4 (y)w) < 0.
The third plainly contradicts hypothesis 3(c)(iv). Also, by hypothesis 2, it implies

0> R (0a(y)w) = —Mmi—)m)'

which contradicts hypothesis 3(c)(iii).
Q.E.D.

The rest of the section is devoted to finding suitable y € Y N (0, 1) satisfying
condition 1 of the preceding proposition. The idea was suggested by Feng (personal
communication, 2020).

Lemma 2.7 (Uniform upper bound of normalized gaps)
Fix 0y € (0,1]. Let F, := {Z?g— 1 d; € D(q)}. If gapmax(D(q)) < 6y, then

gaPmax(¢"Fn) < Oy for all n > 1. In particular, by the overlapping hypothesis,
we have gapmax(q"F,) <1 for alln > 1.

Proof

It is proved by induction on n. When n = 1, the statement is true since ¢F; = D(q).
Suppose the statement is true for all n < k. Let f € F}". We want to show that
G f — fUFR)) <4,
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Writing f = ZkHd /¢, there exists an index jo, 1 < Jo < k+ 1, such that

dj, # 0 and d; = 0 for all jo < <k + 1. With d, = d™?, we have

Jo—1 il k+1 1
f‘[Z P D B el

Thus, if the L.H.S. is > 0, then

jo—1 d d* k+1 q—1
U — Y < ¢ (f—[Z—H—ﬁJr —i]>§907

T ql q]o

which was to be shown. Else, we have

Jo— 1 Jo—1 b k+1
di d; q—1
+ =+ -2+ :
Z q]() Zzl ql qJO ]()Z—’—l q7/
and jg # k + 1. This implies
' j()—l d d k+1 q
min Frp1-j, =0 < ¢ | f — Z q—z - qjo < g Z = max Fjq1_jo,
i=1 Jo+1
so there exists g € F;13" jo such that, with g* = gWHkr1-50)
Jo— 1
Jo .
per(r-50-%) <
Jo—1 i
d; dj, gt :
As Z E + % + % € Fj.q, it follows that
i=1
jo—1 1
k+10p gl k+1 _ R A k1 (9 9

which is < 6y by the induction hypothesis. This completes the proof.

Q.E.D.

Proposition 2.8 (Availability of )

Let A be an algebraic conjugate of q. Suppose @ satisfies the FTC.
(a)

(b) If A is real, then there exists y € Y N (0,1) such that o4(y) < 0.

(c) If R(A) <1, then there exists y € Y N (0,1) such that R (oa(y)) <O0.
(d)

Given any nonzero & € C\{0}, there exists y € Yeore such that R (c4(y)&) < 0.

There exists y € Y N (0,1) such that given any small € > 0, there ezists

w. € C\ {0} with |w.| = 1 satisfying the following. (i) |w. — 1| < &; (ii)
R (ca(y)w:) < 0; and (iii) R (ca(y)w.) < R (Cw.) for all ¢ in the closed disc

Di(1).
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Proof

(a) It is proved by contradiction. Suppose on the contrary %(OA%) > 0 for

all y € Yiore. For the F, defined in the preceding Lemma we have
q" [f — fM] € Yeore for all n > 1 and all f € FX™». Since ¢ satisfies
the FTC, Yeore and hence £ - 04 (Yeore) are both finite sets. Therefore, we have
q" [f — fﬂ =1and R (f x| (q” [f — fﬂ)) = 1 by our initial assumption.

Now

1L oS S o =g (#E) - ).

feFX min
n

Consequently,

R(A" =D& =R A" oa| > [f—[']

feFX min
n

= > REoa@[f-1)> Y 1>,

fEFé min fEF;: min

whence

Am— 1 A
1.
%< Ar g £)>>

If |A| < g, then by letting n — oo we see a contradiction. Else if |A| = g,

n n

A
then R (—f < 0 for infinitely many n. Since

many n. This demonstrates a contradiction.

— 1 asn — oo, and

= [¢], so given any £ > 0, we have R ( q—f) < ¢ for infinitely

¢ = 1 in part (a), there exists y € Y N (0,1] such that oa(y) =
Y)§) § . Since 04(1) =1 and g4(z) =0 < = =0, we have y # 1 and
< 0.

AS 0> R(A—1) = R(oa(X0 [isi — 1) = S0 R (allisi — 1])), there ex-
ists 4o such that R (g4 ([ig; ip — 1])) < 0. Therefore we can take y := [ig; o — 1].

Taking £ = 1 in part (a), there exists y € Y N (0, 1) such that R (oa(y)) < 0.
If R(oa(y)) < 0, then we can simply take w. := 1 and the result follows.
Suppose R (ca(y)) = 0. Since y # 0, so is g4(y). Without loss of generality
we assume S (04(y)) > 0 so that oa(y) = i|oa(y)|. The following figure may
explain the subsequent argument clearer than words:
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oal(y)

We define a number 6y as follows. If |o4(y)| < 2, then define 6, to be the
number in (0,7/2] such that o4(y)e ™ is on the circle |z — 1] = 1. Else
if |oa(y)| > 2, then define 6, to be 7/2. Consider w, := ¥, where 6 €
(0,6p) is a small number such that [ — 1| < e. We have R (ca(y)w.) =
—|oa(y)|sind < 0.

Let ¢ :=re'® € Dy(1), where —7/2 < a < 7/2. Note that if « = £7/2, then
¢ =0, forcing r = 0. We want to show that R ((w.) > R (04(y)w.). Observe
that in the preceding figure, the dashed arrow splits D;(1) into two regions.
They correspond to two cases:

(i) a+0¢€[—-nm/2,7/2]. (i) a+6>m/2.
In the former case, we have R ((w.) = rcos(a+6) > 0> R (04(y)w.). In the

latter case, as the figure depicts, we have r < |04(y)|. Therefore,

0 if @ = 47/2
R ((w.) =rcosacosl —rsinasinfd > ' . o '7T/
—|rsina|sinf  otherwise

> —|oa(y)|sind = R (oa(y)w:) .

This completes the proof.
Q.E.D.

This is the end of our preparation.
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Chapter 3

Real cases

In this chapter, we prove our results for the real cases. As revealed by the special
case (340512) (p@ Proposition @), forbidden patterns and their avoidance will be
the central theme. Another focus is to illustrate what we can learn from the results.
It turns out that we are able to give an example of ® satisfying the FTC while the
associated ¢ is not a PV number.

3.1 Proof of the real cases

We first establish the theorem of forbidden patterns, which plays a principal role for
the real cases.

Proof of the forbidden patterns ( p_lé_ll Theorem '

It is proved by contradiction using p.@ Proposition @ Suppose on the contrary
A€ [=¢.—-1)U(1,q). We take w := 1. Since S\_} 1;1) =1— 4= > 0, Propo-
sition @(2) is satisfied. To get a contradiction, we would like to find a positive

number y and two sets S;,S_ C (D(¢)—D(q)) satisfying the following conditions:

Cl. ye YN (0,1) and o4(y) < 0.

C2. (a) q—1€S; and minS,; <0.
(b) gapmaX<Si) < 1.

C3. For all 6 € S, at least one of the following holds:

(2) a(0) > 0. (©) loaly)l > |22,

(b) o4(d) > oalqg—1). (d) 1— g + 20 > g,(y) for all £> 1.
C4. For all 6 € S_, at least one of the following holds:

(a) 04(8) <0. (©) loaw)] > |22,

(b) o4(d) < oalg—1). (d) 1— = + 20 > 5, (y) for all £> 1.

And we can assume A < 0 when checking C4.

21
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Before proceeding, note that by p. Proposition @(b), there exists 7o € Y 0 (0,1)
such that o4(7) < 0. Also, by an appeal to symmetry (p.[L1] Observation Q), if
the result for Pa-I (resp. Pa-II, Pa-IV) is established, then so is that for Pa-I" (resp.
Pa-II', Pa-IV’).

Pa-1I:
o If P has code (---0), then we take y := v, S; := {[*;0]} and S_ := {[m; x|}, i.e.

Sy = {lm; 0], [m —1;0],...,[0; 0]},
So = {[m; 0], [m;1],...., [m;m]}.
As q—1=[m;0] € Sy and 0 = [0;0] = [m;m] € S4, C2(a) is satisfied. C2(b) fol-

lows from the overlapping hypothesis. Since [P has code (- --0), C3(a) is satisfied.
Finally, given § := [m;j] € S_,

P has code (---j---m---0)
while P has code (---m---j5---0)

= O-A<5) S 07
= 0a([m; 0]) = oa([m; j]) = 04(9).
Consequently, C4(a) or (b) is satisfied.

o If P has code (---1), then we take y := [1;0], S; = {¢—1} U{[x1]} =
{[m;0],[*; 1]}, and S_ := {[m;*]}. Since P has code (---0---1), we have
04(0p) > 04(01), whence o4(y) < 0 and so y # 1. Therefore, by the over-
lapping hypothesis, y € Y N (0, 1), and C1 is satisfied. So is C2, because for S,
we have 0 < [m;0] — [m; 1] =[1;0] < 1.

Note that given § € S;, either 6 = g—1 so that C3(b) is satisfied, or 6 € {[*;1]} C
[P so that C3(a) is satisfied. Finally, to check C4, recall that we can assume A < 0.
As a result, P has code (---0---m---1), whence given 0 := [m;j] € S_,

P has code (---j---m---1) = 04(0) <0,
while P has code (---0---m---j---1) = |0a(0)] < l|oa(y)| < |A|-|oaly)]

Thus C4(a) or (c) is satisfied.

o If P has code (---m), then we take y := vy, S; := {[*;0]}, and S_ := {[m; %|}.
Plainly C2 is satisfied. Given [j;0] € S,

P has code (---j---0---m) = oa([5;0]) >0,
while P has code (---0---j---m) = 02> 04([5;0]) > ga(|m;0]).

Hence C3(a) or (b) is satisfied. Since S_ C —P, C4(a) is satisfied.

This completes the proof for Pa-I.

Pa-II: Suppose P has code (¢y---m---(ly+1)---) for some 0 < ¢y < m — 2. Take
y := [lo + 1; 4], which fulfills C1. We use Sy := {[m;*]} and S_ = {[*;0]}. Given
0= [m7j] € S-i—a

P has code (---m---j---) = 0g4(d) >0,
while P has code ({g---j---m---(lyg+1)--2) = |oa(9)] < |oaly)]
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Hence C3(a) or (c) is satisfied. Finally, to check C4, recall that we can assume
A <0, whence P has code (¢p---0---m---(ly+1)---). Given 6 := [j;0] € S_,

P has code (---0---j---) = 04(0) <0,
while P has code (¢g---j--0---m---(lp+1)---) = |oa(9)] < |oa(y)]-

We see that C4(a) or (c) is satisfied.

Pa-I11: Take y := vy,
Sy :=A{[m;0],[m;1],...,[m; 6]} U {[m—1;0],[m—2;¢],...,[l; ]},

and S_ := {[m;%|}. Pa-IIl implies that C3(a) is satisfied. Since P has code
(-++m---0---), which is impossible when A < 0, C4 is automatically satisfied.

Pa-1V: Suppose P has code (¢p 0---(€y+1)---m---) for some 0 < {4 < m — 2.
Take y := [lo+ 1;40], Sy := {[m; %]}, and S_ := {[*;0]}. We check C3. Given
d:=[m;j| € Sy, if j # £y, then

O’A((S
0>

>

P has code (---m ) 0,
. A(8) = 0a([m; 0]) = oalg — 1).

while P has code (¢p 0---j---m---)

qQ =

=
=
Hence C3(a) or (b) is satisfied. Else if j = {5, then for all £ > 1, we have

(1= g+ 747 ) = oatn = (1= g+ U < ai0100) + 0a0n)

— 1+ 0400 (1= 5 ) ~ 9400)

> —JA(@OH) > 0.

Therefore C3(d) is satisfied. Finally, we check C4. Given ¢ := [j;0] € S_, if j = £y
then |oa(6)| < |A| - |oa(y)|, else if j # €y then 04(5) < 0. Thus C4(c) or (a) is
satisfied.

Q.E.D.

We settle the real cases now.

Proof of the real cases ( p. Theorem m)

When m = 1 or 2, the last digit in the code of P = IP(A) can only be 0, 1, or m.
Hence Pa-I in Theorem @ (p.) is matched and |A| < 1. When m = 3, all of the
24 possible codes of P are:

(0123) (0132)!7 (0213)D  (0231) (0312)¢) (0321))
(1023)7 (1032)Y0 (1203)D (1230 (1302)"D  (1320))
(2013)D (2031)" (2103)D 2130y (2301)"  (2310)P)
(3012)") (3021 (3102)7 (31200 (3201)P  (3210))

The superscripts indicate which pattern the code matches. Therefore |A| < 1 again.
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and iy € {2, 3}:

iy iy de 4y | g
x4,3.0 %0, 1,4
1,2 2,3

As we cannot have (iy,7y) = (2,2), and the cases (i4,79) = (2,3) or (1,2) are Pa-II,
it remains to consider the case (i4,i9) = (1,3). We want to avoid Pa-II and Pa-IT’,
and there are two cases: A > 1 or A < —1. In the former case, we need

(o404
(igiginizio) = { (1++-2---4...)
(++-0---2---3),

(o0 4
(igigizivig) = { (1---2---4..")
(-+0---2---3)

The only possibility is (10243), which matches Pa-IV however. This completes the
proof.
Q.E.D.

Proof of “125034” (p.lé_ll Theorem m)

in Theorem (p@) Pa-I and Pa-I’ force i5 € {1,2,3} and ip € {2,3,4}:

is  |iq i3 do i1 | o
x5,4,0 x0,1,5
1,2,3 2,3,4

Consider i5 = 3. As we cannot have (is,i9) = (3, 3), and the cases (i5,7) = (3,4) is
Pa-11, it follows that (is,i0) = (3,2). By A > 1, Pa-II and Pa-II', we have

(-+-5---0--")
<i5i4i3i2i1i0>: <3 45 >

Next we consider i5 = 2. Pa-II forces ic = 4. By A > 1, Pa-II and Pa-II', we
require

(++-5---0---)
(i5igi3igtyig) = { (2---3---5--")
(++-0-+-3---4),

which does not give any valid code representation.

Finally, consider 15 = 1. Pa-II forces ig = 3,4. We have already handled the
case (i5,19) = (2,4), so by an appeal to symmetry (p. Observation @), the case
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(i5,70) = (1,3) can be ignored, and so i = 4. By A > 1, Pa-II and Pa-II', we have

(++-5---0--)
<i5i4i3i2i1i0>: <1 25 >

Q.E.D.

patterns in Theorem (p@) Pa-I and Pa-I’ force i5 € {1,2,3} and ip € {2,3,4}:

is | g i3 ds 1| o
x5, 4,0 x0,1,5
1,2,3 2,3,4

Consider i5 = 3. Pa-II forces (i5,i9) = (3,2). By A < —1, Pa-Il and Pa-IT', we
require

(-+-0---5---)
(i5 450901 00) = & (3---4---5--)
(...0...1...2>_

If the second digit i4 is 0, then the middle constraint implies the code matches Pa-

IV. Similarly, if the second last digit i; is 5, then the code would match Pa-IV’. As

a result, (i5i414317217179) = (340512). But this contradicts p.@ Proposition @
Next, we consider i5 = 2. Pa-II forces igp = 4. By A < —1, Pa-II and Pa-II', we

have

(o052
(i5igigizigio) = { (2---3---5---)
(++-0---3---4).

Again the second digit iy cannot be 0, and the second last digit ¢; cannot be 5.
These force 74 = 1 = 71, which is a contradiction.

Finally, consider i5 = 1. Pa-II forces iy = 3,4. The case (i5,i9) = (1,3) can be
ignored by Observation Ell (p.@), so ig = 4. By A < —1, Pa-II and Pa-II', we have

(-+-0---5---)
(i5igigigiyig) = & (1---2---5..)
(++-0---3---4).

Again the second digit i4 cannot be 0, and the second last digit ¢; cannot be 5,

Q.E.D.

3.2 Interlude: the secret of <125034>

The result of (125034) (p@ Theorem ) is mysterious because it eliminates all but
one pattern. How does an example corresponding to this chosen pattern, if any,
really look like? In this section, we shall try to unmask the secret of (125034).
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Proposition 3.1 (<125034>: Necessity of large gap)

Let A be a real positive algebraic conjugate of q. Suppose ® satisfies the FTC and
P =P(A) has code (--- (lg+1)---m---0---Ly---(m—1)), where 0 < o < m — 1.
If

> —1 0
[€0+1£0< +Z
1=2

()
glg—1)+1’

then A < 1. In particular, if [m;m — 1] < then A < 1.

Proof

The proof is similar to that of p.@ Proposition @ Suppose on the contrary A €
(1,q). Let y := [lp+ 1;4p) and T; := T, (A, 1). By our hypothesis on [{y + 1; o],
we have y € (0,1), so we can let kg = ko(y) be the smallest non-negative integer
such that

ygzq;1+zma§iﬂ‘ Zq—l

i=ko+1 i=1 i=ko+1

Note that by our hypothesis on [ly + 1; 4], ko can only be 0 or 1. To be parallel
with the proof of Proposition .6, we still define

ko = .
ko otherwise

(although it is always equal to 1 now).

We now define for each i > kf a set E; C (D(q)—D(q)). If ko = 0, then we define
E, := T, for all 7 > k. Else if ky = 1, then we define E; by

g JTru{e—1} ifi=k
Ty if i > k.

With these E;, we have

kg—1

meE <O<y_y_zq—1 SZmaX-Ei.
i=kg ¢ =1 7 i=kg q'
0
Observe that for any j > kj, we have
. max[E; — minE;
ga’pmax(E ) S Z ql bl
because [m; 0] —[m — 1;0] = [m;m — 1] < 1. Therefore, applying our lazy algorithm

(p.[12 Proposition @ to x 1=y, we obtain
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with t; € E; for all © > kj. As a consequence of the FTC (plﬁl Proposition @), we
have

— oa(t;)
AT

s 1%
i=kj

(3.1) oaly) =

We now show that this is a contradiction. Using the code representation of P,
we have 04(y) = oa([lo + 1;40)) > 0a([m;0]) = A—1> 0. On the other hand, as
—T; CL;(A, 1), so if kg = 0, then by (B.1))
> O'A(ti)

Al

O<0A(y): <0,

i=1

giving a contradiction. Else if ky = 1, (@) gives

O'A(tl) > O'A(ti) O'A(tl)
A-1< = < .
0< < oa(y) I + Zz:; =T
If t; € Ty, then the R.H.S. is < 0, which gives a contradiction. As a result, we have
t; = ¢ — 1, and the above gives
oalg—1) A-1

0<A_1< _
< =7 A

which is also a contradiction.

Finally, we check what the hypothesis on [¢y + 1;¢y] means when ¢, = m — 1.
Now

<9l N =B0 1m0 w1
[m;m —1] < p +Z; qi 1 Ry D
whence
q(qg—1)

“qlg-1)+1
Q.E.D.

The preceding proposition, applied to (125034), suggests that we need the gap
[5;4] to be large. By symmetry, we may need [1;0] to be large too. A natural
response is to consider the case [5;4] = [1;0] = 1. It turns out to be productive.

Proposition 3.2 (<125034>: Towards the first example)

Let m = 5 and A be a real positive algebraic conjugate of q. Suppose ® satisfies
the FTC, [1;0] = [5;4] = 1, A > 1, and P = P(A) has code (125034). Then
A2 —6A46>0. In case A2 —6A+6=0, we have A =3 —/3, ¢ =3+ /3, and

(91 82 (95 80 (93 a4
11 ¢/3 ¢g—1 0 2¢/3—1|q—2
111577 3.732 0 2.154 2.732
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Proof
Firstly, we claim that for all y € {[2;1],[3;2], [4;3]}, we have
oa(9;1
raty)] < 22BN

To verify the claim, suppose on the contrary the above does not hold for some
y e {[2;1],[3:2],[4;3]}. Let o :=1 and S, := {[5; %]} for all £ > 1. We apply p.@
Proposition @ using these y, o, and S,. For condition 3(c) of that proposition,
note that if 3(c)i does not hold, then 6 = [5;1] or [5;2], and our assumption on y
implies that 3(c)iii holds. Accordingly, we have |A| < 1, which is a contradiction.

Therefore, by the hypothesis [1;0] = [5;4] = 1, we are considering the IFS

oa(01) ‘ 0a(%) 04(05) 0a(0o) 04(05) ‘ 04(04)
1 [ a A-1 0 b [ A-2

for some a,b € R satisfying

1—a<(2—A)/A
(3.2) a—b<(2—A)/A
b—(A—2) < (2 A)/A.

Adding the inequalities, we get

= 0<A2—6A+6.

When A? —6A +6 =0, by |A| < ¢ we have A =3 — /3 and ¢ = 3 + /3. Also,

A(A—-6 1 6-
equality holds in (@) As <—6) = 1, we have 1= "5 It follows from the
first and third equation of (@) that
2 6—-A A
—9_fo9 9. 222
¢ A 6 3
2 6—-—A 24
b=A-— —=A- 2. ———=——1.
3+ 1 3+ 5 3
Q.E.D.

As 3 — /3 &~ 1.2679492, we see that ¢ := 3 4+ V3 ~ 4.7320508 is not a PV
number. The IFS discovered in the preceding proposition,

(I) = {pl‘ + alp}’?zo )

@n={ o1 L (%) w2 wov )

1 2
=1 0, 1, (1+——). (1+=), a+v3). ©@2+3 }
{ (1+5) (1+5) arvm e+
,  1.5773503, 2.1547005, 2.7320508, 3.7320508 } ,

—~
w
w

S~—

I
—
=
—_
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is also of the required form of Chapter E section @ And finally, yes. This IFS
indeed satisfies the FTC. Bravo! Let’s ... defer the verification until Chapter B,
nevertheless, for we can give a more systematic treatment of the issue there. We
ask the reader’s pardon for the deferment.

We end by describing an implication of the FTC for this ®. Now, as a con-
sequence of the FTC, Yeore is a finite set. We shall verify in Chapter H that
Yeore = {1, ¢q/3 — 1}. Using the notation in p.1§ Lemma @, we define

X, —q”F—{qu d; € D( )}

By that lemma, we have {x —zWXn) . g e Xﬁmin} C Yeore. Let

Ni(n) =#{ze X,z - gWXn) = 1},
No(n) :=#{z e X, 1z — W) = /3 — 1}.

It follows that #X,, = Ni(n) + Na(n) + 1 and

Nim) 1+ Na(n)- (3-1) = Y @—ah)=g"—1.
IGXTXLI’DII)
The last equation gives
q n
A =
1 3 1 Ns(n) A" —1
Since
1 3 -1 ) .
1 44 1 ¥ -
3 _ 3 _| 2 2
Ay = V3 V3
3 3 2 2
we have
( n An
Ni(n) = 2 ; 1
\/§ n n
(3.4) 3 Valn) = L2(q" - A7)
3+1 3—1
#X, = */_; g — \/_2 An
\

As g, A are the roots of 22 — 62+ 6, recalling the theory of linear recurrence relation,
we also have

Ni(n+2)+1=6[Ni(n+1)+1] —6[Ny(n)+1] =6Ni(n+1) — 6Ny (n)
(3.5) Ny(n +2) = 6Ny(n + 1) — 6Ny(n)
#X o =6 (#X011) — 6 (#X,).
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For instance, takingn = 1in (@), we have Ny(n) = 2, Na(n) = 3, and #X,, = 6.
This matches the data in () Taking n = 2 on the other hand, we have N;(n) = 11,
Ny(n) = 18, and #X,, = 30. This matches the structure of X5, as the following
tables show (we use the shorthand (i) := 0; in the meantime).

x € X,y | value | x — 2 r € X,y | value | x — 2
(O)g+(0)| 0 00 Mg+ 0y [4732] 1
Og+(1)| 1 1 (Dg+ (1) |5.732| 1
(O)g+(2) | 1.577 | ¢/3 — 1 (1)g+ (2) | 6.309 | ¢/3 — 1
(0)g+(3) [ 2.154 | ¢/3 -1 (1)g+ (3) | 6.886 | ¢/3 — 1
(0yg+ (4) | 2732 q/3—1| | (2)g+(0) = (1)g+ (4) | 7.464 | ¢/3 — 1
(O)g+(5) |3.732| 1 (2)g+ (1) = (1)g+ (5) | 8.464 | 1

r e Xy | value | x — 2t
2)q+ (2] 9.041 |¢/3—1
(2)q+ (3) | 9.618 | ¢/3—1
(3)q + (0) = (2)q + (4) | 10.196 | ¢/3 — 1
(B)g+ (1) = (2)g+ (5) | 11.196 | 1
(3)q+ (2) | 11.773 | ¢/3 — 1
(3)q + (3) | 12.350 | ¢/3 — 1
r € Xy | value | z — 2t r € Xy | value | x —a¥
(4)g+(0) = (3)g+(4) | 12.928 | ¢/3—1| | (5)¢+(0) | 17.660 | 1
Ag+ (1) = (3g+(5) | 13928] 1 (5)q + (1) | 18.660 | 1
(4)g+(2) | 14.505 | ¢/3—1| | (5)q+ (2) | 19.237 | ¢/3 — 1
(4)g+(3) | 15.082 | ¢/3—1| | (5)q+ (3) | 19.814 | ¢/3 — 1
(4)g+ (4) | 15.660 | ¢/3—1| |(5)g+ (4)]20.392 |¢/3—1
(4)g+(5) | 16.660 | 1 (BYq+ (5) | 21.392 | 1

Finally, using (@), we have Ny(n) = 53, Na(n) = 90, and #X,, = 144 when n = 3.

These numbers can be demonstrated with the aid of computer.
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(General cases

4.1 Conjugates on the unit circle

We start to deal with complex algebraic conjugates in this chapter. To begin with,
note that if |A| = 1, which may happen now, then we cannot apply p. Proposi-
tion R.9(c). This section is devoted to establishing some tools for such case.

Our approach is inspired by [, proof of proposition 3.2]. Unlike the original
argument, we simply consider algebraic conjugates of g rather than general complex
numbers on the unit circle.

We make an observation which was suggested by Feng (personal communication,
2021). Given an algebraic conjugate A of ¢ with |A] = 1, it only happens that
(arg A)/m ¢ Q, for otherwise there exists n > 1 such that A" = 1, which leads
to the contradiction ¢" = 1. Accordingly, we have the following lemma, which
corresponds to [[ll, Lemma 3.6].

Lemma 4.1 (Outcome of irrational rotation)

Let A be an algebraic conjugate of ¢ and wy € C\ {0} a nonzero complex number. If
|A| = 1, then given any z € C\ {0}, we have R (zwo/A") = 0 for at most one i € N.

Proof
Since (arg A)/m ¢ Q, we have

{ ggigg?ﬁ% z(()) = arg (zwo /A7) — arg (zwo/A’) € Zr =i = j.

Q.E.D.

The next result shows that, given a sequence {0, } -, of complex numbers with
positive and increasing real parts, if the set {|o,, — 0,_1| : m > 2} of distances be-
tween consecutive terms is a finite set, then the sequence cannot lie on a finite
number of circles centred at the origin.

Proposition 4.2 (Dilemma of finiteness)

Let {an}zoz1 be a sequence of complex numbers. Let A, := o, — 0,_1. Suppose the
following hold:

31
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1) {|Anl} 2, is a finite set; (iii) FEither A, =0 or R (A,) > 0;
(ii) A, # 0 infinitely often; (iv) R (o1) > 0.

Then {|on|},~, cannot be a finite set.

Proof

It is proved by contradiction. Suppose on the contrary {|o,|} -, is a finite set.
A fortiori {R(0,)},~, is bounded. As {®(0,)},—, is an increasing sequence, it
converges and hence

(4.1) R(A;) =R (0;) —R(0i—1) > 0 as i — oc.

Let C := {R € {|oa|},>; : los] = R for infinitely many i}. Since {|oy[},5, is a finite
set, we can define Ry := max(C. There exists a subsequence {O'TJ}OO , r1 > 1, such
that

1. |O',~j‘ = Ry and A, # 0 for all j (by Ry € C and A; # 0 infinitely often)

2. There is a dy > 0 such that |A,,| = do for all j (by the finiteness of {1Anl}52)

1 c (Oa OO) or C (—O0,0)
(suppose {O’Tj} is a subsequence satisfying requirement 1-2. If (O'T].) =0 for
some j, then by R (o1) > 0 and N (A;) > 0 for all i, we see that writing o,, =
Ol4r; = O24r; = * 0 = Opqry + Ot+1+r;, WeE have ‘0-7“-| < |Uz+1+rj‘- Hence by the
definition of Ry, we can take a subsequence of {arj so that this “same £ sign”
property is satisfied.)

Define u := 1 if {S (arj)};i -

=1 —

3. & (arj) are all of the same =+ sign: {S (arj) };i

(0,00), and u := —1 otherwise.
4. There exists R; € C such that ’0_1+le = R, for all j (by finiteness of {|owl},>,)

5. {arj} converges: (Urj) Tag >0, (O'Tj) — by (by the compactness of the circle
2| = Ro)

6. | )| = do (by requirement 2 and (@)), whence by # 0
(we have

(9 (0r,) — R (A0)) + (3 (00,) — 5 (&) = S < B
S RAOM(A,)) —29(0,) S (A) +3(A) < R2
12) = OMR(A,) +5(8,) (S(8,) ~25(0)) <O

If by = 0, then letting j — oo we have d3 < 0, a contradiction.)

7. (Ar].) are of the same =+ sign as u for all j, and & (Arj) — ud,
(suppose {UT].} is a subsequence satisfying requirement 1-6. By (@) given e > 0
for all large j we have € > d3 — 23 (Arj) by = d% — 2\s( ) |bo|. If u=1 and
Ry (Arj) < 0, then this inequality gives € > d3, which is a contmdzctwn for small
€. The same happens if u = —1 and & (Arj) > 0. Therefore, & (Arj) is of the
same + sign as u for all large j.)
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8. {0_14r, } converges (by the compactness of the circle |z| = Ry)

9. Writing
Oy, = Rye's, O 14r; = Rye'
where ¢;,0; € [0,2m), there exists I' € R such that ¢, — 0; =T for all j.
(we have
2 2 _ 9
!arj — 0_1+Tj| = |Arj} = dy = constant

= (Rocos ¢; — Ry cosf;)? + (Rosin¢; — Ry sin6;)* = constant
= c0s ¢; cos 0 + sin ¢; sin 0; = constant

= cos(¢; — 0;) = constant)

oo

C (0,00) or C (—00,0)
(suppose {O‘Tj} is a subsequence satisfying requirement 1-9. If (O'_1+rj) =0 for
some j, then by R (0_1+rj+1) >R (arj) > R (0'_1+Tj) > 0 and |% (0_1+rj+1)‘ >
0= !% (0'_1+Tj)’, we have Ry = ‘U_HTJ,H > |0_14r;| = Ri1, a contradiction.
Therefore, by taking a subsequence of \ o, ¢ if necessary, we can have this “same
+ sign” property.)

Define v := 1 if {% (U_l_,_rj)}

10. & (J,HTJ,) are all of the same + sign: {% (J,HTJ,) }j=1

% C(0,00), and v := —1 otherwise.
7=1

This ends our construction of {O'T]. };.11
When u = 1, the situation is like the top row of the following figure:
I

The bottom row on the other hand illustrates why there should be contradictions.
To be precise, write

Ry := lim T Re"

] “i=lim ooy,
J—00

j—00
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where ¢,, 0, € [0,27). As lim; oo 0_14,, = limo,, —limA,, = ag + i(by — udyp), we
have

(43) Dis (R0€i¢*) = ap = x (Rlew*) .
Also, observe that

10 (0;41—06;
O 1pr;y, = et =e (0541 ])0-_1+Tj’
Trjpy = Rye!lrn1tl) — 61(9,7'+1—9j)0rj_

(4.4)

We shall finish the proof by showing a contradiction for each of the following four
cases:

(i) bp > 0, v = —1; (iii) bop >0, v =1;

(ii) by <0,v=1; (iv) bp <0, v =—1.

Suppose case(i) happens. Then ¢, € (0,7/2), and 37/2 < 0; < 0y < --- < 27.
There exists g9 > 0 such that ¢, + 259 < 7/2. With this &g, for all large j we have

{0<¢j<¢*+€0

0< 9j+1 —9]' < €,

whence 0 < ¢; < ¢j + 041 — 0; < 0. + 29 < /2. As a result, we have 0 <
cos(f41 — 0+ ¢;) < cos ;. But by (ﬁ), ¢jr1 = 0j41 —0; + ¢;, whence R (arjﬂ) =
R cos ¢j41 < Rocos¢; = R (0,,), showing a contradiction. This means that case(i)
is impossible. Case(ii) can be excluded by a similar argument.

Next, suppose _case(iii) happens. Then ¢, € (0,7/2), 6. € [0,7/2), 6; € (0,7/2),
and 6; | 6,. By (1.4), we see that o_y4,, = % o_,, and 0, =% g, s0
letting 7 — oo, we have

(4.5) Rief = 005 | Ryer = 004

It follows that

R (Rie”) =R (ei(e*_el)a_lm) = [cos(0, —01)|R (0_140,) +[sin(0s—01)[S (0144, -

Since by > 0, we have u = 1 and so & (4,,) > 0. Together with R (A,,) > 0, we get
R (Rye®) < [cos(B, — 01)| R (0v,) + [sin(0, — 01)| S (0v,) = R (Roe®) by (fL.5).

This contradicts (@) however. This means that case(iii) is impossible. By a similar
argument case(iv) can be excluded too. This completes the proof.
Q.E.D.

Below is our major tool for handling conjugates on the unit circle. The proof is
adapted from [I, proof of Proposition 3.2].
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Lemma 4.3 (Sufficient condition for |A| # 1)

Let A be an algebraic conjugate of q. Suppose there existy € Y \{0} and {s;(¢)};=, C
(D(q)—D(q)) such that

- sz(q
oy

=1

2. There exist Ky > 0 and w € C\ {0} such that

A
m)>O

Cy = —R(oa(y)w) + 205]? (Si<A)

and R (Sl(jz)m) >0 foralli> Ko+ 1.

If ® satisfies the FTC, then |A| # 1.

Proof

It is proved by contradiction. Suppose on the contrary |A| = 1. Since y € Y, we
can write

y=:— Z Si(iq), where s;(¢q) € (D(q)—D(q)) for all —uy <i <0.

t=—uQ

Consider the sequence {s;(¢)};=_, - Asy # 0, we have s;(q) # 0 for some —uy <
i < 0. We claim that s;(q) # 0 infinitely often. For, suppose s;(q) = 0 for all but a
finite number of . Letting s,,(q) be the last non-zero term, by hypothesis we have

(4.6) 0= i sila) _ pzo 5ila)

But then

I ( (z )):ﬁ;wgm)
—Z%( ")+ sz( ):C++§1%(si<j>

—ug

m)20+>0

Now, since A’ gives rise to irrational rotation and (D(A)—D(A)) is a finite set,
there exists a positive integer N > Kj such that R (stwv/A") # 0 for all nonzero
s € (D(A)—D(A)) \ {0} and all i > N (Lemma @) Using such N, we define

showing a contradiction. This verifies our claim.

X si(A)w
Pt

Op =
i=—ug

As R (01) > C4, we are in the same situation as in the preceding Proposition §.2.

Therefore, {|o,|}, -, cannot be a finite set. However, this contradicts the FTC (p.

Proposition R.2). This completes the proof.
Q.E.D.
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4.2 Proof of the general cases, part I

We split the goal of this chapter, p.@ Theorem @, into two propositions:

Proposition 4.4 (General cases, part I)

Let A be an algebraic conjugate of q. Suppose one of the following holds:
e /by € Q for all i;
e m < 2;

e m = 3 and Ly(A,w) does not have code (1302) or (1032) for all nonzero v
and all £ > 1.

If & satisfies the F'TC, then |A| < 1.

Proposition 4.5 (General cases, part II)

Let A be an algebraic conjugate of q. Suppose m = 3. If ® satisfies the FTC, then
|A| < 1.

We prove the former in this section and handle the latter in the next. The
following proposition, which we call “basic move”, will be used repeatedly in our
argument.

Proposition 4.6 (Basic move)

Let A be an algebraic conjugate of ¢ and G = G(A) C C a set of complex numbers.
Suppose there existy € Y N (0,1) and w € C\ {0} such that

R(oaly)w) <0 and —R(oa(y)w)+R((w) >0 foralleq.

Let w := w. Suppose further that given any ko > 1, there exists S = S(ro,kg) C
(D(q)—D(q)) satisfying the following properties:

e ¢g—1€S8 andminS <0;
¢ gaPmax(S) < 15

e given any 0 € S, there exists ( € G such that
p (A— 1) o4(0)ro
— A
AR > .
(&) ;:1 R ( T ) + R ( ko ) > R (Cw)

If & satisfies the F'TC, then |A| < 1.

Proof

It is proved by contradiction. Suppose on the contrary |A| > 1. By hypothesis, we
have

(4.7) R(oa(y)w) <0 and —R(oa(y)to)+ R(¢rw) >0 forall ¢ € G.
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With L; = L;(A, ) and H;f = H; (A, tv), let ky be the smallest non-negative integer

such that i
0 o0 +
qg—1 max H
cy izl mH
i=1 i=ko+1

1 ifkg=0
Let kf = o . For each ¢ > k{, we define a set E; C (D(q)—D(q)). If
ko otherwise

ko = 0, then we define E; := H for all i > k}. Else if ky > 1, then we take

| if i > k.

Since ¢ — 1 belongs to S, we have

ol -1 . max[E;
oy oty e
- 4 =k q

AsminS <0 and 0 € H;, by y > 0 and the definition of ko we also have

kg—1 1 0 if kg =0
q JE—
— . — °° H 1
Y ; p <Z ma;“ ) z— if ko > 1

zk*

>y =
k*q

_0

@

Moreover, in view of the structure of H; (p. Lemma @) and the hypothesis on
S, we have

maxE; — min E;
gaPmax (EZ> S Z Z

i=0+1 ql
for all ¢ > k* Thus, our lazy algorithm (p. Proposition @), applied to = :=

ko— lq
y—>1 = L gives

g—1 li

(48) DD B

i1 1 i—ks

0
with ¢, € E; for all 7 > k.
Define a real number ¢, € R by

y R (74()w) it ko =0
(49) o= —R(oa(y)w) + SR ( ) + R (UA;,'ES ) otherwise.

We claim that ¢, is positive from this definition. Note that by (@), cy is positive
if kg = 0. Else if kg > 1, then as t, € S(1v, ko), so by the hypothesis on S, there
exists ¢ € G such that ¢y > —R (04(y)t0) + R (¢rv), which is positive by (@) This
justifies the claim.
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We proceed to handle the cases |A| > 1 and |A| = 1 separately.

Case |A| > 1:_In this case, as a consequence of the FTC (p@ Proposition @), we
obtain from (@) and (@) that

—cy :9%< i Uéﬁi)m> .

i=ko+1

Ast; € H CL; for all i > ko + 1, the R.H.S. is > 0, which contradicts ¢, > 0.

Case |A| = 1: In this case, we can apply p.@ Lemma @ with Ky := ko to reach a
contradiction.

Q.E.D.

To satisfy the conditions of the basic move, we have the following result.

Lemma 4.7 (Availability of S for simple patterns)

Let A be an algebraic conjugate of q, o € C\ {0} a nonzero complex number, and ¢
a positive integer. Suppose one of the following holds:

e b;/by, € Q foralli;

e m < 2;

e m =3 and L, = L,(A,w) does not have code (1302) or (1032).
Then there ezists Sq = S¢(A,w) C (D(q)—D(q)) such that

1. ¢q—1€S; and minS, < 0;

2. gaPmax(Se) < 1;

3. for all o € Sy, at least one of the following holds:

(i) % (20m) > 0. (i) R (220 = % (Ug).

Proof

If b;/b,, € Q for all 4, then L, has code (m(m —1)---10) or (01---(m —1)m).
Hence, for Sy := {[m;*]}, either 3(i) or 3(ii) holds for all 6 € S;. The case m =1 is
similar. If m = 2, we can use

o . [{2:00,2:1),0} if L; has code (210), (201) , (021) or (012)
) {12:0],[1;0],0} if L, has code (102) or (120).

Lastly, for m = 3, the possible codes of L, are

(0123) (0132) (0213) (0231) (0312) (0321)
(1023) (1032y (1203) (1230) (13027 (1320)
(2013) (2031) (2103) (2130) (2301) (2310)
(3012) (3021) (3102) (3120) (3201) (3210)
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We can define S; according to the following table:

Code of L, Se
0---) {[3; 0], [3; 1], [3; 2], 0}
(1023Y, (1203), {1230y or (1320 | {[3;0],[2;0],[1;0],0}
(2--9) {[3;0],[2;0], [2;1],0}
(3--4) {[3;0],[3; 1], [3; 2], 0}

Q.E.D.

We are now ready to achieve the target of this section.

Proof of the general cases, part I (D.I?E Proposition M)

It is proved by contradiction. Suppose on the contrary |A| > 1. Let y € Y N (0,1)
and w. € C\ {0} be obtained from p.l7] Proposition R.§(d), where € := 0.5 (the
value of € is not important in this proof). Let G C C be defined by

1
T P

By the assumption |A| > 1, we have G C D;(1). Therefore, by the properties of y
and w,, we have

R(oaly)w:) <0 and —R(oas(y)w:)+ R (Cw:) >0 forall ¢ € G.

Let w0 := w.. Given kg > 1, we take & = S(w, ko) := S, (A, tv) using the preceding
Lemma {1.7. We apply the basic move (Proposition {.6]) and it remains to check ().

This can be shown as follows. Given § € S, by the property of Si,, one of the
following holds:

(i) R (%Z,E?m) >0; or (i) R <Ozif>m) >R <(AA—;01)m> :

1
Hence, the L.H.S. of (&) is > R ((1 — E) m) , where j equals kg — 1 or k. This
fits the definition of G and ().

Q.E.D.

4.3 Proof of the general cases, part II

To accomplish the goal of this chapter, it remains to prove part I of the general
cases (p.Bg Proposition {.5). The focus of this section therefore is the case m = 3
(ie. ® = {px +d;p}>_, is a 4-tuple). Let a,b € Q[q] be such that

Qo] o | o
0 ‘q—l—b‘q—l

Define two subsets S,, Sy, of (D(¢)—D(q)) by

S, {[3:00,13;1], (32,0 ={g— 1, ¢g— L —a, b, 0},
S {[3;0],[2:0],[1;0],0} = {g—1, ¢ —1—b, a, 0}.
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Also, given an algebraic conjugate A of ¢, define two sets G, Gy, by

Ga:Ga(A)‘*:ef{1—i:ézo}u{l—mzezl},

Al Al
def I 1+04(b) .

Lemma @ (p@) reveals that there are only two code representations that are
resistant to our previous strategy. They are (1302) and (1032). We highlight the
following heuristic: when using the basic move (p@ Proposition {.6) for the case
m = 3, in many situations we are able to conclude that L, (A, ) has code (1302)
or (1032), and that d =¢—1—a or ¢ — 1 — b in (B) according to S = S, or S,

Lemma 4.8 (4-tuple: Upper bounds of |A])

Let ® be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
If |A| > 1, then

() 4] < 1+ oa(a)l; (i) JA] < |1+ 0(b)].
Proof
It is proved by contradiction. To begin with, let y € Y N (0,1) and w. € C\ {0}
be obtained from p.7 Proposition @(d), where € := 0.5 (the value of ¢ is not

important in this proof).

(i) Suppose on the contrary |A| > |1 + c4(a)|. Let G := G,(A). By our assumption
and by |A] > 1, we have G C D;(1). Therefore, by the properties of y and w.,
we have

(4.10) R(oa(y)w.) <0 and —R(oa(y)w:)+ R ((w:) >0 forall ( €G.

We use the basic move (p@ Proposition @) to reach a contradiction. Let
o = w,. Given kg > 1, take

Sk, (A, w0) if Ly, (A, ) does not have code (1302) or (1032)

S, otherwise,

S(m, k’o) = {

where S, (A, w) is from p.@ Lemma @ It remains to check (&¥).
Given § € § = S(w, ko), if one of the following holds:

(411) (@R (mf(&i?m) >0; or (i) R <0A1§i2m) >R (M;—k(})m> :

1
then the L.H.S. of () is > R ((1 — —) m) , where 7 equals kg — 1 or ko,

AJ
whence (B) is fulfilled by the definition of G. Else, suppose () does not hold.
In view of the properties of Sg,(A,w) from Lemma U.7, we see that Ly, (A, )

has code (1302) or (1032), and 6 € S, = {[3;0],[3;1],[3;2],0}. As ¢ does not
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satisfy ()7 the code of Ly, (A, w) forces 6 = [3;1] = ¢ — 1 — a. Here [3;1] may
be called a “compulsory digit”. It follows that the L.H.S. of (&) equals

1+ o04(a)
%((1_—,4% )m> .
Again (B) is fulfilled by the definition of GG. This completes the proof of part(i).

(ii) To prove this, we just need to repeat the proof of part(i) with b in place of a,
so that we use Gy, S, instead of G, S,. The “compulsory digit” will be [2;0] =
q—1—"binstead of ¢ — 1 — a.

Q.E.D.

Lemma 4.9 (4-tuple: Inequalities for Yeore)

Let ® be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
If |A| > 1, then for all y € Yeore, we have

O’A<b) +1

() A

> |oaly) —1; (i)

oala)+1
A

2 loals) - 1

Proof

It is proved by contradiction. Plainly the statements are true when y = 1, so we
may only consider y € Y N (0, 1).

aA(a) +1
A
Noting that |A| < |1 + o4(a)| by the preceding Lemma @, we have

(i) Suppose on the contrary < |oa(y) — 1| for some y € Y N (0,1).

(4.12) 1 <loa(y) —1].

Let Qp := € be such that R ((oa(y) — 1)) = —|oa(y) — 1| and G := G,(A).
We claim that

() R(caly)Q) <0 and (II) — R (ca(y)Q) + R ((Q) >0 forall ( € G.

For, if ¢ = 1 — 1/A* with ¢ > 0, then by (.19

R (0a(y)0%) + R (CQ) = Joaly) — 1| — R (i—) ~1- "fj—,' >0

Else if ( =1 — (1 + 0a(a))/A" with ¢ > 1, then
Al

1+ 0a(a)l
|A]

R (o)) + R () = |oaly) — 1] — R (L”Q)
> loaly) — 1] =

Noting that the last expression is > 0 by our initial assumption, we have verified
the claim. It may also be illustrated by the following figure:
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Now we are like having (), with g in place of w,.. We can use the same
argument as in the proof of Lemma [1.§(i) to reach a contradiction.

(ii) As in the proof of Lemma @(ii), we just need to repeat the argument in part(i)
with b in place of a.

Q.E.D.

Corollary 4.10 (4-tuple: Asymmetric IFS with R (o4(a)) . R (c4(b)) > 0)

Let ® be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
If |A| > 1, then

(i) a#b;
(ii) R (o4(a)) > 0 and R (04(b)) > 0.

Proof

It is proved by using the previous two lemmas.

(i) Suppose on the contrary a = b. Taking y := [2; 1] = ¢—1—2a in Lemma @(i),
we have

O’A<CL> +1

1| >
oa(@) +1] = | 4G

\ > A= 2= 204(a)| > 2|1+ oala)] — |A].

On the other hand, we have |A| < |1 + 04(a)| by Lemma @(1) Therefore the
above is a contradiction.
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(ii) Suppose R (04(a)) < 0. Then in the complex plane, the point o4(a) is closer
to the point —1 then 1, whence |o4(a) + 1| < |oa(a) —1|. This contradicts
Lemma @(1) nevertheless (with y := a). This shows R (ca(a)) > 0. By a
similar argument using y := [3;2] = b, we get R (c4(b)) > 0 too.

Q.E.D.

We remark that although part (i) of the preceding corollary sheds some light on
the issue, it will not be used directly in our subsequent argument.

Lemma 4.11 (4-tuple: One way or another)

Let ® be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
If |A| > 1, and R(A) < 1 + R(oa(a)), then fory = [2;1] = q¢—1—a—1b the
following holds. For each ¢ > 1, there ezists 6, € {a,b} such that

R (0a(y)) + R (1 - HZ—?(‘M> > 0.

Proof

It is proved by contradiction. Suppose on the contrary there is some ¢ > 1 such that

AT AT
Rioa) (1= 5 ) - # () <o

1 1 1
Let £ :=1— 1 Noting that both <1 — F) R <1 — ﬁ) > 0, we have
(4.13)

—R(oaly) +R |1 - L) p A_1_0A<a)>§0

R (A1 oa(a)l§) + R (04(8) = R (oa(w) + % (2D <
SR (A1 - 0a(a) + R(04(B)E) = —R (0a(y)) — R (“iff)) <.
As R(A—1—04(a)) <0 by hypothesis and R (£) > 0, the first inequality gives
R(o0a(b)) < R([A—1-04(a)l)
=R(A—-1—04(a)) R(E) —S(A—1—04(a)) I(&)
<=3 (A-1-04(a))I(6)

Noting that R (c4(b)) > 0 by Corollary , we see that S(A—1—04(a)) and
C\,

< have different + signs (including zero). Similarly, the second inequality of
(K.13) gives

v

§R<A—1—O’A(CL)) §R(UA
%(UA

> =3 (0a(b) ().

As R(A—1—04(a)) < 0 by hypothesis, we see that I (c4(b)) a

nd S (€) have the
same =+ sign. We conclude that (A —1—04(a)) and S (0a(h)) = I(

S (1+0a(b))
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have different + signs (including zero). Together with R (A —1—04(a)) < 0 <
R(oab)) <R+ o4(b)), we have

whence
|A—1—04(a) —oa(b) — 1] > |1 +0a(b)|.

However, one of the inequalities for Yeore (Lemma @) gives

|1+ 04(b)]

>
1+oad) 2 g

> [oaly) — 1

(asy = q¢—1—a—>b = [2;1] belongs to Yeore). This shows a contradiction and
completes the proof.
Q.E.D.

Lemma 4.12 (4-tuple: Dominance of R (A))

Let ® be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
If |A| > 1, then

(i) R(A) = 1+ R(0a(a)); (i) R(A) =1+ R(0a(b))-

Proof

We prove (i) first and it is proved by contradiction. Suppose on the contrary R (4) <
1+ R(ca(a)). Let y:=[2;1]=qg—1—a—>b. As R(0a(b)) > 0 by Corollary §.10,
we have R (o4(y)) = R(A—1—04(a)) —R(ca(b)) < 0,80y € Y N(0,1). Define

G C C by
1 1+O’A<(5[)

where 9§, is given by the preceding Lemma . By that result, we have

R(oa(y)) <0 and —R(oaly))+R() >0 forall (€q.

Once again we use the basic move (p@ Proposition @) to reach a contradiction.
Let o := 1. Given kg > 1, take

Sko (A, ) if Ly, (A, w) does not have code (1302) or (1032)

Ss otherwise
kg )

S(m, ko) = {

where Sy, (A, w) is from p.@ Lemma @ It remains to check (E¥).
Given § € S, if one of the following holds:

(414) () R (mf(;:gm) >0, or (1) R (%) > R ((AA_—k:)m) ,

1
then the L.H.S. of (&) is > R <1 ~ o | , where j equals kg — 1 or kg, whence

(A9) is fulfilled by the definition of G. Else, suppose () does not hold. In view of
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the properties of Sy, (A, o) from Lemma @, we see that Ly, (A, o) has code (1302)
or (1032), and

= Sa:{[3;0]7[3;1]7[3;2]70} if(skoza
sz{[3;0]a[2;0}=[1;0]70} if 5k0 =b.

As § does not satisfy (), we have

5= [3, 1] if (Sko =a
[2; 0] if 5k0 = b,

so that 0 = ¢ — 1 — dj,. It follows that the L.H.S. of () equals

%((1—HZ—2‘§%))1~0).

Again (B) is fulfilled by the definition of G. This completes the proof of part(i).

To get a proof of part (ii), we just need to interchange the roles of a and b in the
previous argument.

Q.E.D.

Corollary 4.13 (4-tuple: Requirement of configuration)

Let ® be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
If |A] > 1, then

(i) ®(A) > 1;
(i) [A] 7 15
(i) [S(A)] < [S(0a(a))] and | (A)] < [S (a4())];

(iv) R(oa(a)) >0 and R (ca(b)) > 0.

Proof

We have R (04(a)) > 0 by Corollary , hence the preceding Lemma gives
(). (ii) follows from (i) as A # 1. For (iii), as we have the upper bound |A| <
|1+ 04(a)| (Lemma §.8), and Lemma shows the dominance of f (A), therefore
IS (A)| < IS(1+4+04a(a))] = |S(ca(a))]. Similarly we have | (A4)] < | (@(b)ﬂ

For (iv), taking y := [1;0] = a in one of the inequalities for Yeore (Lemma {.9), we
have
|oa(a) +1]
joala) =1 < —F—.
A
Since |A] > 1 by (ii), we have |o4(a) — 1| < |oa(a) + 1|, whence R (c4(a)) > 0. The
inequality for b can be proved similarly using y := [3;2] = b.

Q.E.D.

By part (ii) of the preceding result, from now on we can restrict our attention
to the case |[A] > 1.
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Lemma 4.14 (4-tuple: Arguments)

Let @ be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
Write

A=:ryexp(ifa),
14 ca(a) =: roexp(ibfy),
14 04(b) =: rgexp(ifs),

where 04,0,,05 € [—m/2,7/2] by Corollary . If |Al > 1 and |0, — 05| < 7/2,

then we have 0, # 03, and 04 is strictly between 0, and 0z. That is, 04 €
(min {60, 03} ,max {0,,03}).

Proof

Using y := [2;1] in the inequalities for Yeore (Lemma @), we have
(4.15) |A—1—04(a) =1 —oad)” <min {1+ ca(a)]*, |1+ 0a(d)]*}.
The L.H.S. is

= (racosfy — 140080, —r5c08035)* + (rasinfy — rysinf, — rgsinfs)?
=1 + 17 4 15 + 2rar5(c0s O cos 05 + sin b, sin 0)

— 2rara(cosf, cos By + sinf, sinby) — 2rgra(cosbscos s + sinfgsiny)
=14+ 15 4 15+ 2rar5c08(0 — 05) — 2rara cos(0 — Oa) — 2rgra cos(fs — 04).

By hypothesis, we have cos(f, — 03) > 0. Hence, if cos(f, — 03) > cos(6, — 04),
then by rgz > r4 (Lemma U.§) we have

2rq15c08(00 — 03) — 2rar 4 cos(0y — 04) > 0,
whence the L.H.S. of () is

> %+ ri + r% — 2rgracos(fs — 64)
>+ 4rh—2rgra >re =1 +oala)l.

This contradicts () We get a similar contradiction if cos(6, —05) > cos(65—64).
Therefore, we see that

cos(0, — 05) < cos(b, — 62a)
cos(, — 0p) < cos(bs — 04).

As 04,0,,05 € [—m/2,7/2], using a picture we conclude that 6, is between 6,
and 3. As the above inequalities are strict, we have 6, # 03 and therefore 64 €
(min {0,, 05} ,max {0,,03}).

Q.E.D.



4.3. Proof of the general cases, part 11 47

Corollary 4.15 (4-tuple: g4(a) and o4(b) are separated by the real axis)

Let @ be a 4-tuple and A an algebraic conjugate of q. Suppose ® satisfies the FTC.
If |A| > 1, then S (0a(a)) and S (oa(b)) have different £ signs.

Proof

It is proved by contradiction. Firstly, suppose both & (o4(a)) and I (o4(b)) are
> 0. By the configuration requirement (Corollary ) and the dominance of f (A)
(Lemma Y.12), we have

whence

rosinf,, rgsinfs > |rasinfy|
1 <rqcosb,, rgcostls < rscosly,

where we have used the same notation as in the preceding Lemma . Conse-
quently,

T, Sin 0 r48infy
tanf, = — 2> =tanfy
Ta €SO,  TaACOSO4
rgsin g ra4Sin 6y

tants = = tanfy.

rgcostls  racosly

However, as S (1 + 04(a)) and (1 + 04(b)) are both > 0, we have |6, — 05| < 7/2,
so 04 should be strictly between 6, and 8 according to Lemma . This shows a
contradiction.

A similar argument can be used to handle the case both S (04(a)) and S (o4(b))
are < 0. This completes the proof.

Q.E.D.

It is the time to accomplish the goal of this chapter.

Proof of the general cases, part I1 (p.@ Proposition m)

It is proved by contradiction. Suppose on the contrary |A| > 1. It implies |A| > 1 by
the configuration requirement (Corollary ) Since ® satisfies the FTC, it follows
from part I (p.Bg Proposition @) that L,(A, w) has code (1302) or (1032) for some
tv and ¢. Using the definition of the code representation, we see that there exists
6 € [0,27) such that one of the following holds:

R (0a(05)e™) > 0
>

‘ R (04(0a)e?), or
R (54(05)e™) R (o4

( (82)(2"9) .

By abuse of notation, let us call the first situation as (1302) and the second as

(AVARY,

(1) R (0a(dr)e”) >
§R (O'A(al)eze) Z 0
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(1032). Accordingly, we have four inequalities:

(4.16)
(1--:3--) = R(oa(a)e”) >R (0a(qg—1)e”)

= 0>cos0 - R(A—1—04(a)) —sind-S(A—1—o04(a));
(4.17)
(1-+:0--4) = R(oa(a)e”) >0
= cosf-R(oa(a)) —sinf - (oa(a)) > 0;
(4.18)
(++3::2) = R(oalg—1)e") >R (0a(g—1—0b)e")
= cosf-R(oa(b)) —sinb - I (oa(b)) > 0;
(4.19)
(-+0--+2) = 0>R(oalg—1—0b)e")
= 0>cosf - R(A—1—04(b)) —sinbh-I(A—1—04(b)).

Since o4(a),04(b) are separated bi'he real axis (Corollary ), so by the
4.13

configuration requirement (Corollary (iii)), there are two cases:

S (oa(a)) >0, S(oa(db) <0 S (oa(a)) <0, S(oa(b)) >0
F(A—1—04(a)) <0 or SF(A—-1—-o04(a)) >0
(A —1—=0a(b)) >0, (A —1—=04(b)) <0.

We consider the first case as the second can be studied similarly. Byﬁa a(a)),
- 1 ( 12

R (04(b)) > 0 (Corollary §.13(iv)) and the dominance of & (A) (Lemma {1.12),
(K.16) gives 0 > cosf-[>0] — sinf-[<0],
(U.17) gives 0 > cosf-[<0] — sinf-[<0],
(U.18) gives 0 > cosf-[<0] — sinf-[> 0],
(B.19) gives 0 > cosf-[>0] — sinf-[>0].

However, contradictions arise from

the 1st when 6 € [0, 7/2],
the 2nd when 0 € (7/2, =],
the 3rd when 6 € (7, 37/2],
the 4th when 6 € (37/2, 2m).

This completes the proof.
Q.E.D.

So, we have finally finished the proof of the general cases. We end this chapter by
noting that, as a byproduct, we obtain the following result about pattern-avoiding
configurations given by planar point sets.
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Proposition 4.16 (Pattern-avoiding configurations)

Suppose ((1,Ca, g) € C3 satisfies the following conditions:
() R(G)>1 R(G)>1
(i) R(g—G) =0, R(g—¢)=0.

(iil) S (G > [S (9], S (&) > [S(9)]-

(iv) S(¢) and S (G) have different + signs.

Then for all 0 € [0,27), neither (1) nor (2) below holds.

W R(G =D > R((g-1e?) = 0 > R((g—G)e);
@) R (G -1e?) = 0 > R((g=1De?) = R((g—G)e”).

The following figure illustrates this result for the case I ((;) > 0 > I ((a).

Q1

(G —1)et?
B e (3r/2, 2r): 0< R ((g — C2)e™) @

il
\ f,r—{.g

(G —1)e

\(;—1)

‘ _ @ belo. n/2): (Q1—1’9)<§R(q—1 Y @
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Chapter 5

Examples

In this chapter, we present examples of ® satisfying the FTC but the associated ¢ is
not a PV number. We use the concept of basic net interval and characteristic vector
introduced in [20] in our discussion. The definition can be found in Appendix

(pBI).

As Theorem @ (pa) states, we demonstrate five examples:

[. Arbitrary m > 5, m odd, and A € RN (1,q).
IT. Arbitrary m > 5, m odd, and A € RN (—¢q,—1).
III. Arbitrary m > 6, m even, and A € RN (1, q).
IV. m=4, |A| > 1.
V. m=4, |Al =1.
They are discovered by educated guess and computer experiment. The first three
are inspired by the result of Chapter B, while the last two are by Chapter @ As this

chapter may present overwhelming information, the reader can just take a look at
Example I and V for an understanding of the general ideas.

In the final section, we explain in detail how Example IV and V are found. We
finish by presenting miscellaneous results which are inspired by the examples.

5.1 Example 1

Let m > 5 be an odd integer and a € R. Consider the situation

;=1 ifi €0, (m—23)/2
O;=q—1—m+i ifie[(m+3)/2, m]
and
Om=3)/2_| =+~ | 01 | Om=)2 || Om | 0o || Omsnyy2 | O | - Omesypo
(m=3)/2]---] 1| a |q¢-1[0|q¢g-1-a|qg=2]---]qg—1—(m—3)/2
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We make some hypotheses in light of the proof of Proposition @ (p@) We assume
that ¢ has a real algebraic conjugate A > 1, that P(A) has code

m—3 m—1 m—+ 1 m+3
e R TR | NP N O
2 2 2 2
and that
( ('m—1'7~n—3')7(/1—1)—’“7—3
AT T T A
(fm+1 m—1] (A—1)—m=3
5.1 . — 2
( ) UA(_ 9 ) 2 _) A
(_m+3 m+1_) (A-1)— =3
o ; =
N2 2] A
Adding the equations, we have
A-1-m5
A-m+4+2=3 ——=—

A
= A2 - mA+24A=3A—-15m+15

= A~ (m+ 1A+ 1.5m—1.5=0,

whence

A (m+1)+/(m+12—-6(m—1) (m+1)+vVm>—4dm+7
q, 4= 5 = 5 .

Asm > 5, we have (m+1)? > (m+1)2—6(m —1) > 0, so both ¢ and A are positive

real numbers. We have A > 1 because

_Jm2_4
(m+1) - MAT 1 e (m—1)> (VP —dm §7)?

< 2m—6>0.

A fortiori ¢ > A > 1. Note that ¢ ¢ N, for otherwise there exists N € N such that
N2 =m?—4m + 7= (m — 2)*> + 3, whence

{N—(m—Q)zl
N+ (m—-2)=3.

This gives N = 2 and m = 3, which is a contradiction. From the quadratic equation,

— 1
we have ¢(q — (m + 1)) = 1.5 — 1.5m, whence ¢! = % Therefore, (@)
5 —1.5m
gives
-3 —1-m=3 -1 — 1) 2 -5
aom=3 .4 7 _m=-1_4¢ (m+1)  2¢+m 7
2 q 2 3 6
and so
4q9—m —1

a(m+1)/2:q—1—@: 6
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r 1
1
m -
i ..
o| 23
i ——4|3
r.lr—i!/ __"_l J
SIS /_ 10,
o I‘.:!I'_l'—IH -} / 4
0 G l - / ™~
'Ir,r'—.w—l; . ! o — 1 1
6 ||lg-1-2=2{|e-—5 7 — 2} L1
A [ S "';;_w“‘""
Figure 5.1.1: 1st iteration of Example I.
Since

m—3 vm2 —4dm+7
) W |
(@=1)-— + 5
we see from (EI) that ® = {pr + 9;p}-, is of the required form of Chapter E
section

We proceed to verify that ¢ satisfies the FTC. Figure illustrates the 1st
iteration. In the figure, the horizontal lines represent the intervals [0;, 0; + 1]. The
numbers above them are labels for the characteristic vectors. That is, the 1st basic
net intervals give rise to the following characteristic vectors:

> 0,

Sl

S2

<T
s, <Lm+1, [O,w],i> (i=1,2,3)
< .

Si

g—m+2 |—qg+m+1
SRl i

Note that S, is not degenerate because its first component is positive:

2¢—2m+1 _ vVm?—4dm+T7—-m+2 vm?—4dm+7—vm?—4m+4
3 B 3 B 3
Figure 15 1.ﬂ and |5 1d illustrate the 2nd iteration. They reveal that all characteristic

vectors have already appeared among the 1st basic net intervals. The behavior of ®
is

> 0.

1—1m3.2.3%.42.5,
2 1m=3/2.9.32 . 42,
3 1m=9/2 9. 32 5
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m—1 m =13 m — 1

g 2 3 T IR INY 4

\ 2 + glm = 5) _Am=1)g=m+1

1, 1 f-a= 6 >

7 " ——
- - dg— rln -1 g - h_:r +1lig _ (m+ qul)— 2m+2

. g { &
. 2 3 ] i
0——1'._1 ‘5
A———} -_1
A e i

L ]
ne—3 m=23 mr—1 m =1 ™
q-T_(q_l_ 2 )= 2 4= 2 3 [
3 H L —— -
1 [
—
[ ]
[ ]
. i
m—3 m—1 2 ]
+lg-1)= q—1 —t13
= F 4&——1._._1

e 2

Figure 5.1.3: 2nd iteration of Example I. (part two)

4342
5 1(m=3)/2 32 42 5,
where for instance the expression “4 + 3-4%” means that an n-th basic net interval

of type Sy produces three (n + 1)-th basic net intervals, one of type S5 and two of
type Sy.
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We end by studying some properties of ®. For small m, we have

m | oa(01) -+ 04(Om) Code of P(A)
5|1, 0422, —0.154, —0.732, 0.267 (125034)
711, 2 0784, —0.430, —1.645, —0.645, 0.354 (21370465)
91, 2,3, 1.131, —0.737, —2.605, —1.605, —0.605, 0.394 | (3241908576)

Noting that A tends to 1.5 as m — oo:

(m+1)—\/m2—4m+7_1, (m+1)2—(m?*—4m+7)

lim = lim = 1.5,
m—300 2 m—00 2[(m + 1) + vVm? — 4m + 7|
we have asymptotically
oa(O), -+, 0a(Omzs), 0a(Omza), 0a(Omsr), 0a(Omgs), -+, 0a(On)
m m m m
~~ 1 . — — - S .
Y Y 2 ? 6 3 67 2 7 7 O 5
and P(A) has code
m—3 m—1 m+ 1 m+3
o1 —1)-.. )
< 2 2 mOm=1)--—5 2 >

From the figures, we see that
Yeore = {1a£2a€3 + 64}7

where ¢; denotes the first component of S;. Note that

—m+2
=1
and
. oqg—m-+2 . L /Vm2—4dm+T—m 1/ -4
s 3 mlféo?)( 2 T2o) =3 g T20) =08

5.2 Example II

Let m > 5 be an odd integer and a,b € R. Consider the situation

{@:a—l—(i—l)b for all i € [1, (m+1)/2]
0;=q—1—=0,_; forallie[(m+1)/2, m],

so that we have

O] 0 ||  Owm-vp | o\ Om || Omevyp || Oma
a‘a—l—b‘---‘a—kbm 3/2H ‘q—lHq—l—ﬁ( _1)/2‘--~‘q—1—a

We make some hypotheses in light of the theorem of (120534) @ Theorem .
and Example I. We assume that g has a real algebraic conjugate A < —1, that P(A
has code

(1-+-0--m-- (m—1)),
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and that letting 7 := 04(a), we have

(5.2)

From the last equation, we have 7 = (A — 1)/(A + 1). Consequently,

A—1 :ZaA([z';z‘— 1))
= 204(a) + (m — 2)oa(b)

:27+0n—2)62i1+£>

2(4 - 1) A-1  A-1
T AT +(m_2)< A +A(A+1)>‘

Multiplying both sides by A(A +1)/(A — 1), we have

A2+ A=2A+ (m—2)(A+2)
= A~ (m—1)A—-2(m—2) =0,

whence

Ao (m—1)+/(m—12+8m—-2) (m—1)+vm?+6m—15

g, - 2 - 2 .
Asm > 5, we have (m—1)? < (m—1)>+8(m—2), so ¢ is positive and A is negative.
We have A < —1 because

(m—1) —+v/m2+6m — 15

5 <—1 = (m+1)7?*<(Vm2+6m —15)

< 0<4m — 16.

A fortiori

q:‘m;1‘+|\/(m—1)2+8(m—2) A1

2

Note that ¢ ¢ N, for otherwise there exists N € N such that N? = m? 4+ 6m — 15 =
(m + 3)% — 24, whence

(m+3)— N, (m+3)+ N)=(1,24) or (2,12) or (3,8) or (4,6).

Since m is an integer and m > 5, this shows a contradiction. From the quadratic

1 _
equation, we have (¢ + 1)(¢ —m) = m — 4, whence p—— = 371 _TZ. It follows that

g—1 ¢ —(m+1l)g+m —2¢+3m—4
a= = — _
q+1 m—4 m —4
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As ¢ — 1 =2a+ (m — 2)b, we also have

qg—1—2a
m— 2

~ mg—"Tm+ 12
T (m—4)(m-2)

By ¢ > 1, we have a = (¢ — 1)/(¢ + 1) € (0,1), and by (5.9,
-1 -1 1

(52 52
q q q

Therefore, ® = {px + 9;p},-, is of the required form.
We verify that & satisfies the FTC. The first characteristic vector is:

(1, [0],1) |

Figure illustrates the 1st iteration. The new characteristic vectors are (the 3rd

b:

(0,1).

| o |

1.‘ 1 2 ']
_ _‘z-——u | )
or 2 4,
8 | ..
o) e
ﬁ'___“ _1_
lC}I:ru 1)/2 '. -
ﬂ{m-'n-_.-'i pr 4'—i“ 6 2 '
] ’rm 1 /l
:Jr—

Figure 5.2.1: 1st iteration of Example II.

components are omitted for brevity):

5| (o, 0) (FL2m= o)

L R o e )

Sy | (92— 1, [1—al) < Q+2m 3’ [ﬁ”fb

Sa | (1=, [0,0]) < }“q“”yi m2)4’ {’(Zq—_zx?(:lntl;)D
Sl 00 <2m<q el W e (e
Se | (B2 —1, [1—10]) < q+2m " [_Tnﬁgzngb

S o -y | (2L 2q+3m ey,
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1 2 ;
, 9 - _T\ -
1_—‘13‘" q-31=q‘q170=8m1 S :
; Li‘.. g Q'32=Q'{31+QT+E)=Q31+Q—1+G
2 A5
#62
2
m—1
;*'f5
q- 9y AT 154
lg-01+ 0 ., 5
e 454
—r

< 0 1, 6 2
mq-aﬁ.a-q(a“ %) =gl a-1)-a
‘_'_‘:1_1 lg-0m1=q-(g—1—a)=qlqg—1) — (g— 1 —a)| q-(g—1
« 454
—51
1»———t..
.oi;i»ﬁ 2
o——:lg.
2
|Q'am—2+(q_1)=qam—l_ﬂl 3 i'.J 4
———
®e 4|54
—5 4
A —
.h—Liyﬁ 2 3
p—— 4.
|- 0m1+0m1=9-On1+(g—1—a)=q(g—1 t —3 A
—t

Figure 5.2.3: 2nd iteration of Example II. (part two)

Figure |52QI and 523| illustrate the 2nd iteration. There is one new character-
istic vector:

We note that T is not degenerate because its first component is positive:

Ts | (2a—1, [1 —a))

m—4 m—4

—4q+5m — 4 [2q—2m]>

qg—1
2. 970 9451
qg+1
1 TP 8m=2) _ m—1 m—1
< >3 « q=—5 L Vim ); (m )zmQ + 24

Figure shows that it is the last characteristic vectors.
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s 2 8 )
q-(q-9p1)

i
-*

1672
34
—r
— 12
[ ]
e 45 i“
'@ 54

*d5 460

— j ﬂr

F W

Figure 5.2.4: 3rd iteration of Example II.

The behavior of @ is

0—1-22.3.4m72.5m3.6.7,
1—1-2-3.4m73.5m73

21523426,
3+52.4m3.5m3.6.8,
4+ 2,

5rs22.3.4m2.5m3.6.8%
6+>2-3.-4m3.5m3.8
T—2.4m3.5m3.6.7,

8 4™t 53

where for instance the expression “2 ++ 2 -3 - 4% . 6” means that an n-th basic net
interval of type Sy produces five (n 4+ 1)-th basic net intervals, two of type S, and
three of types S, S3, Sg respectively.

We can study the properties of ® like the previous example. This time we just

remark that )
11— 1
Kore:{ayb}:{q aaq a}7
q

e
and as m — 0o, we have A — —2:

. (m—=1)—=vVm2+6m—15 . (m—=1)2=(m?*+6m — 15)
lim = lim = -9
m—+00 2 m—o0 2[(m — 1) +v/m?2 + 6m — 15

Y

qg— m,and a,b — 1.
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5.3 Example III

Let m > 6 be an even integer and a € R. Consider the situation

0, = i itieo, (m—4)/2]
O;=q—1—m+i ifie[(m+4)/2, m]
and
Oim sy [ [0 [Opm—2ys2 || O \@n/f 10 || Oms2yz2 [Omer |-+ | Omsayy2 .
e N Y e L R R e e

We assume that ¢ has a real algebraic conjugate A > 1, that P(A) has code

m—4 m— 2 m m + 2 m + 4
T om0, e 7
2 2 2 2 2
and that
( (m—2'm—4_>_(A—1)—mT*4
e TR A
m m—2 m-+2 m] (A—1)— =4
5.3 N R e e Ty 2
5:3) a5 =on [P =
<m—|—4 m+2_) (A-1)— =4
oAl | ——; ———1) =
\ M2 2] A
Adding the equations, we have
A=
A-m+3=4 ——=—

A
= A? —mA+3A=4A—-2m+4

= A2 —(m+1)A+2m—4=0,

whence

Ao (m+1)+/(m+1)2—42m—4) (m+1)+vVm?>—6m+ 17
q, A= 5 = 5 .

As m > 6, we have (m + 1) > (m + 1)*> — 4(2m — 4) > 0, so both ¢ and A are

positive real numbers. We have A > 1 because

(m+1) —vm?—6m + 17
2

>1 < (m—1)72>(Vm2—6m+17)°
< 4m —16 > 0.

A fortiori ¢ > A > 1. Note that ¢ ¢ N, for otherwise there exists N € N such that
N2 =m? —6m+ 17 = (m — 3)? + 8, whence

N—(m-3) =1 N—(m—-3)=2
{N+(m—3):8 of {N+(m—3):4.
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The former gives 2N = 9, while the latter gives N = 3 and m = 4. Both are
contradictions. From the quadratic equation, we have q(¢ — (m + 1)) = 4 — 2m,
1_4—(m+1)

whence ¢~ 1o . By (@), we have
m—4 q-1-"2 m—-2 g—(m+1) g m-—5
N T R
SO 5 )
m_
6(m+2)/2:q—1—azzq—T.
Since
—4 2—-6 17
@—JJ—ﬁ%r—=L5+V%l 2m+ >0,

we see from (@) that @ = {pz + J;p}.", is of the required form.
We verify that & satisfies the FTC. Figure illustrates the 1st iteration. We

17#» 1
mj_“
™
L ] i i
o 2 .34 3
m — 4 :._'_“_l 3 ‘
2 43
a:g m—>5 __«_J‘ 1
4 4 /."—t
q—1 T
o 3g m-—1 q._E_|_1 q—?—;—i-ﬁ . 1 |
1 1 2 —

Figure 5.3.1: 1st iteration of Example III.

see that the 1st basic net intervals give rise to the following characteristic vectors:

Syl (1, [0],4) (i=1,...,m—4)
s, <w [0],1>
4
—q+m+1 q—m+3| . .
Sy | { ———, 0, ——=|,i) | (i=1,2,3,4)
4 4
S <q_m+1, [_q+m“],z> (i=1,2,3)
2 4
g—m+3 |—qg+m+1
(= ]

Sy is not degenerate because its first component is positive:

g—m+1 1vm2—6m+17—-m+3 Vm?2—6m+17—+vm2—6m+9
> 2 > - 1 ~

0.
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m—d m— 4 m—2
q 2 T2
A/ - . 3 — 4
! N N
e — 1 2 _ — —
q m m—2 m+2 3
A———i ga=— + g= q+ g-=1 ¢ —q mg-2m+4
® 4 4 2 2 q 3 ~ 3 = 2
. 3
.| 2|,
——ad |3
—0d|3
1|———0._1
A e e
 — L]
/"’/’._ A———h
m—4 m _ m—2 —m + 2 . |
T +(q 2'“)_ 2 1t 135 o |
1 m—4 m—
— ga + +1= q
. 2 2
™
o 213

A __1 !
——4 3
1!———1;__1
——

W+(Q—E+l) =%Q—m+2’

2

Figure 5.3.2: 2nd iteration of Example III. (part one)

3 | 5
— T

_m — 2 (M =
q-(g 2+1}—q {2 1)q

—

-»

m+ 4
2

g—2m+4

]

¢ L]
.
—43
4!-——1'._1 'i

— ] | ¢

— 7
—
s
[ ]
[ ]

Figure 5.3.3: 2nd iteration of Example II1. (part two)

Figure b32| and I53d illustrate the 2nd iteration. They reveal that all characteristic
vectors have already appeared among the 1st basic net intervals. The behavior of ®
is

1—1m%.2.34. 43 .5,
2,_>1(m—4)/2.2.35".437
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3 1m=0/2.9.32. 5
4 3% .43,
5 1(m=4)/2 33 43. 5,
where for instance the expression “4 +— 32-43” means that an n-th basic net interval
of type S, produces five (n + 1)-th basic net intervals, two of type S3 and three of
type Sj.
We can study the properties of ® like Example I. This time we just remark that

g—m-+3
}/;ore: 1, - y
)

and A tends to 2 as m — oo:

lim (m+1) —vm? —6m+17 lim (m+1)%> — (m? — 6m + 17)

5.4 Example IV

Let a € R and consider & = {px + @p}fzo, where

Wlo] o | 8 |
0lallg—1)/2l¢g—1—-alqg—1

Solving A, 7 := 04(a) from

T=(A%2—-1-71)/A%
(5.4) { (A—1)j2—7= (A% —1—1)/4°

we get T = (A?2—1)/(A*+1) and f(A) = 0, where f(x) := 2°—42*—32° —42* —4x—A4.
By computer, the roots of f(z) are

4.8344222, 0.2850073 £ 0.9767886¢, —0.7022184 4 0.5532115¢,

and |A| = 1.0175191 > 1 for A := 0.2850073 + 0.9767886:. We have the IFS

80 81 82 63 a4
2 2
g —1 q—1 g —1

0 N R —1- —1
¢+ 1 2 1 @+ 1 I

0| —05¢°+2¢>+2¢+1|05¢—0.5]0.5¢>—2¢>—¢q—2 g—1

0 0.9179374 1.9172111 2.9164848 3.8344222

Hence @ is of the required form. We verify that it satisfies the FTC. The first
characteristic vector is:

Figure illustrates the 1st iteration. The new characteristic vectors are (we omit
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0.5¢* — 2¢°* — q — 2

Figure 5.4.1: 1st iteration of Example IV.

the 3rd components for brevity):

1st component 2nd component

s, —0.5¢°+2¢> +2¢+ 1 0
= 0.9179374

s, 0.5¢° —2¢> —2q | [0, —0.5¢* + 2¢* + 2q + 1]

= 0.0820626 = [0,0. 9179374]

s, 0.5¢ — 1.5 [0.5¢° — 2¢* — 24]

= 0.9172111 = 0. 0820626]

3, —0.5¢> +2¢* + 1.5¢ + 2.5 | [0,0.5¢° — 2¢* — 1.5¢ — 1.5]

= 0.0007263 = [0,0.9992737]

s, ¢ —4¢> —3q¢—4| [-0.5¢° + 2¢* + 1.5 + 2.5]

= 0.9985474 = [0.0007263]

5, 0.5¢ — 1.5 | [-0.5¢® 4 2¢* 4 1.5q + 2.5]

= 0.9172111 = 0. 0007263]

s, —0.5¢> +2¢* +2q + 1 [0.5¢% — 2¢* — 24]

= 0.9179374 = [0. 0820626]

Figure 2 and - illustrate the 2nd iteration. The new characteristic vectors

lg-a+g=-05¢" +2¢° +2¢° +2q)

] 1 (@2, 3 4~ 5 1

» 9 R [} T 7 %\

1 2 304 5 4 [¢-a=—-0.5¢" +2¢" +2¢° + ¢ [¢-(0.5¢ — 0.5) = 0.5¢% — 0.5q]
T8 s

[g-a+(0.5¢° — 29> —g—2) + 1= —0.5¢" +2.5¢° — 1]

9. 10 2

—— 3 |4
] —— 6 2Y11 _1
|q ca+ (—0.5(13 +2¢° +2q+ 1) = —0.5¢* + 1.5¢° + 4¢° + 3¢ + 1| 12 13 [2 3[4
— . =
— ¢ .
[g-a+(q—1) = —05q" +2¢* +24° + 29— 1] + <:‘ﬁé. 11 12¢

Figure 5.4.2: 2nd iteration of Example IV. (part one)
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iq~ (0.5¢° —2¢* —q—2) = l]..'_'nf,rl"1 : 2¢° — ¢* Eqi
& 6 2, 7 ?
1213 2, 4 - ,
1—_‘.:“ 6 ‘ib 8 b
3 -)
19 .10 2, 4 - ;
{— ‘:} 6 ‘ﬂ" ? d
Figure 5.4.3: 2nd iteration of Example IV. (part two)
are:

1st component 2nd component

. —0.5¢* +1.5¢° + 4¢° + 2¢ + 1 [0.5¢° — 2¢° — 2¢]

s = 0.5212121 — [0.0820626]

. 0.5¢* — 2¢% — 2¢° [0, —0.5¢" + 2¢° + 2¢* + 1]

) = 0.3967253 = [0,0.6032747]

- —0.5¢* + 1.5¢° +4¢* +2¢ + 1 [0.5¢" — 2¢° — 2¢7]

10 = 0.5212121 = [0.3967253]

- 0.5¢* — 2.5¢° + 0.5¢> — 0.5¢ + 1 [0.5¢° — 2¢* — 2q]

1 = 0.9144262 = [0.0820626]

- —0.5¢" 4+ 2¢® + 1.5¢° + 2.5¢ | [0,0.5¢" — 2¢° — 1.5¢* — 2.5¢ + 1]

12 =0.0035112 = [0,0.9964888]

- 0.5¢* — 2.5¢° + 0.5¢> — 0.5g + 1 [—0.5¢* 4+ 2¢* 4 1.5¢* + 2.5¢]

1 = 0.9144262 = [0.0035112]

Figure and show the 3rd iteration.

It gives rise to:

1st component 2nd component

Ui —0.5¢> + 1.5¢° +4qg + 3| [0.5¢° — 2¢* — 2q]
= 0.9009628 = [0.0820626]

Ui 0.5¢% — 2q — 2 | [0, —0.5¢* + 2q + 3]
= 0.0169746 — [0, 0.9830254]

Ui —0.5¢> +1.5¢° +4q +3 [0.5¢* — 2q — 2]
= 0.9009628 — [0.0169746]

The 4th iteration is illustrated in Figure

vector:

. There is only one new characteristic

1st component

2nd component

—¢*+4¢" +4q+1

1%
1 — 0.8358748

[0.5¢° — 2¢° — 2q]
= [0.0820626]




66 Chapter 5. Examples

q-la-a] = —0.5¢° +2¢" +2¢° +¢° = 0.5¢° —¢* — 29— 2
—2+ 8 E/ 9 1 10 2
<G - —
q-lg-0+(g—1)]=¢°—q
1910 2314 _
= = . 0t
[—1 6 1 -
1n———u 2 4 6 2
A 1—0 : 8 gr
(q* —q) +(0.5¢° —2¢° —q—2) =0.5¢° —¢* —2¢q—2

Figure 5.4.4: 3rd iteration of Example IV. (part one)

q- (—0.5¢* + 2q° + 2¢° + 2q — 1) = —0.5¢° + 2¢* + 2¢° + 2¢°> — g = 0.5¢° — 3q — 2

2
74/ 11 a2 13 2
AN

il i
—

I(0.5q3—3q—2}+(n-5q3—2q2—4—2)+1=€—2q*—4q—3l

102 4 4 | [¢-(0.5¢2 — 0.5¢) = 0.5¢° — 0.5¢
T e 6 Ny
&E‘. 304 5 4
[(05¢° —3q—2) + (g— 1) = 0.5¢° — 2 — 3| — ..:'i% 8 of

Figure 5.4.5: 3rd iteration of Example IV. (part two)

lg- (0.5¢° — 2q — 3) = 0.5¢" — 2¢* — 3q|
= 14 15f 16 2
'x\ —

13&&, 3 4 |f1 : f0-5q3 — 0.5q2} = 0.5¢* — D.5q3|
T+ - 1é' 6 2 17 J.
{ IQ 17 2
cn:‘ii‘, 5

=02 s of

(0.5¢* — 2¢* — 3g) + (0.5¢° — 2¢> — g — 2) + 1 = 0.5¢* + 0.5¢° — 4¢® —4g— 1|

Figure 5.4.6: 4th iteration of Example IV.

As Figure demonstrates, this is the last characteristic vector.
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g+ (0.5¢" — 0.5¢°) = 0.5¢° — 0.5¢* = 1.5¢* + 1.5¢° + 2¢* + 2¢ + 2
- 17 2
i ) a
1&&;, | 5
I—I_ b } J
=0 2,5 9

Figure 5.4.7: 5th iteration of Example IV.

As a result, the associated matrix is

Ry S1 Sy S3 Si S5 Se¢ S7 Tz Ty Ty Ty The Ths Ura Urs Uss Vi
RO 1 11 1 11 1 1 1 0 0 0 0 0 0 O 0 0 0
Sg/0 1 111 1 1 1 0 1 0 0 0 0 0 0 0 0 0
Sy 0 0 00 000 0O 0O 0O O 1 0 0 00 0 0 0 0

0 00 0000 0O O T1 00 00 0 0 0 0
S0 0 11 1 11 1 1 0 0 0 1 1 0 0 0 0 0 O
S¢/0 000 0000 O0OO0OO0OOOOT1T 0 0 0 0 0

0 00 0000 O0OOOO OO T1T 0 0 0 0 0
Ss/0 0 11 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0
S0 0 11 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0
S0 0 11 1 11 1 1 1 0 0 1 0 0 0 0 0 0 0
s {0 0 10 1 10 1 0 0 0 0 1 0 0 O 0 O 0 0
T, {0 0 10 1 11 0 1 0 0 0 0 0 0 0 0 0 0 O
Tw|0 0 10 0 10 1 1 0 1 0 0 0O 0O 0 O 0 0 0
T./0 0 11 1 11 1 1 0 0 0 1 0 0 0 1 0 0 0
T, |0 0 00 0 OO OO 0O O OO0 O OO0 O 1 0 0
T30 0 11 1 11 1 1 0 1 0 0 0 0 0 O 0 1 0
Us/0 0 11 1 11 1 1 0 0 0 1 0 0 0 0 0 0 1
Us|0 0 10 0 000 0 000 00O 0O 0 0 0 0 0
Us|0 0 11 1 11 1 1 0 1 0 0 0 0 0 0 0 0 1

V0O 0 11 1 11 1 1 0 1 0 1 0 0O 0 0 0 0 O |

Reading from the figures, we find that

Y;:ore :{ 617 ‘62 +€37 64 +€57 64 +€67
Uy + LU, by + Lig, Lo+ li1, lro+ li3,
Uy + lra, 15+ lig, lo+ l17 },

where for instance f3 means the first component of S3, £17 means the first component
of Vi, etc. We proceed to simplify the R.H.S.. From (@) and a = —0.5¢° + 2¢* +
2q + 1, we have

1
——+ 0.5¢° — 2¢* —

7q5—1—a

29 — 1
e
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This and ¢° — 4¢* — 3¢® — 4¢*> — 4q — 4 = 0 give

From these, (@),

—0.5¢° +2¢* +2¢* +1+a=0.

{ 0.5¢% — 2¢" — 1.5¢° — 2.5¢° + 1 + a = 0;

and the above tables of the characteristic vectors, we find that

indeed '
v 1 _
Yeore = {q 4 - 1,2,3,4,5},
qZ
because
(1 =—05¢+2¢*+2¢+1
=Ly + g =Ly + Lo = i + b1z = b5 + L1 = b + l17,
2
1=
h=a=1"7372
q
Uy + 03 =0.5¢> —2¢* — 1.5 — 1.5
= 64 + 657
qg—1 ¢ —1-a
bhtl3=——-—a=———,
2+ €3 5 =
—1—a
byt by =054 +28 +22+1=1""-"¢
q
4
_1-
ly+ 1 = 0.5¢" —2¢° — 1.5¢° —=2.5g+1 = L — 2
q
5 —1-a
g+ by = —0.5¢% +2g+3 = QT.
Finally, we record the codes of L;(A,1) (0 < j <5):
J oa(01)/AI oA(0s) /A7 oA(03) /A7 04(04)/A7 | Code of L,
0 0.220 + 3.414% | —0.357 4+ 0.488¢ | —0.935 — 2.437¢ | —0.714 4+ 0.976: (10243)
1 3.281 4+ 0.7314 0.362 + 0.471% | —2.557 + 0.2112¢ 0.724 4 0.943: (14203)
2 1.593 — 2.8944 0.544 — 0.212¢ | —0.504 4 2.470¢ 1.089 — 0.424i (14203)
31 —2.292 —2.300¢ | —0.050 — 0.572% 2.192 + 1.155¢ | —0.100 — 1.1444 (30241)
41 —2.801 4 1.5297 | —0.553 — 0.110% 1.693 — 1.750¢ | —1.107 — 0.2204 (30241)
) 0.671 + 3.0637 | —0.256 + 0.492¢ | —1.184 — 2.079¢ | —0.513 + 0.984: (10243)

5.5 Example V

Let a € R and consider ® = {px + @p}fzo, where

0| 0|

o, |

8 |

04

0lallg—1)/2l¢g—1—alq—1
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Solving A, 7 := 04(a) from

55) {T:(A4—1—T)/A4

(A—1)/2 — 7= (A — 1 —1)/A%,

we get 7 = (A* —1)/(A*+1) and f(A) =0, where f(z) := 2* — 42® — 42? — 4z + 1.
By computer, the roots of f(z) are

4.9606929, — (0.5811388 £+ 0.81380447,  0.2015847.

Since f(1/x) = f(x)/x*, we see that the non-real roots A, A of f(z) satisfy |A| = 1.
We have the IFS

80 81 82 83 a4
4 4
qg-—1 qg—1 qg-—1

0 — o -1
¢ +1 2 1 ¢+ 1 e

0| 0.5¢°—25¢2+05¢—1]05¢—05| —05¢+2.5¢+05¢| ¢q—1

0 0.9967028 1.9803465 2.9639901 3.9606929

Hence @ is of the required form. We verify that it satisfies the FTC. The first
characteristic vector is:

| Ro[ (1, [0],1) ]

Figure illustrates the 1st iteration. The new characteristic vectors are (we omit

124

— _F_:“ 2 1
[1_7

0.5¢° — 2.5¢° + 0.5¢ — 1

0.5g — 0.5 — Ll r
| J] TU-5Q3+2-5'§'2I‘|‘[‘-59_

Figure 5.5.1: 1st iteration of Example V.
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the 3rd components for brevity):

1st component 2nd component

s 0.5¢° — 2.5¢° + 0.5 — 1 0
— 0.9967028

s, —0.5¢> +2.5¢° — 0.5¢ + 2 | [0,0.5¢° — 2.5¢* + 0.5¢ — 1]

= 0.0032972 = [0,0.9967028]

5, 0.5¢ — 1.5 | [=0.5¢° +2.5¢* — 0.5¢ + 2]

— (0.9803465 — [0.0032972]

s, 0.5¢> — 2.5¢> + 0.5 [0, —0.5¢" + 2.5¢* + 0.5]

— 0.0163564 = [0, 0.9836436]

s —¢* + 5¢° [0.5¢° — 2.5¢% 4 0.5]

= 0.9672873 = [0.0163564]

5, 0.5 — 1.5 [0.5¢° — 2.5¢% 4 0.5]

— 0.9803465 — [0.0163564]

s, 0.5¢° —2.5¢* + 0.5¢ — 1| [~0.5¢° + 2.5¢° — 0.5¢ + 2]

= 0.9967028 = [0.0032972]

Figure and illustrate the 2nd iteration. The new characteristic vectors

_ _ — (¢-a+q=—05¢ +25¢° + 2 - 0.5]
10l 1 9~3 3 1 5 |
—
t 1 9 lg-a= IITI.St,'4 = I2,-'3q'; + l?,-‘]aql2 — g = —0.5¢" +2.5¢" + q — 0‘5: :q - (0.5g — 0.5) = 0.5¢° — 0.5!}':
——— 2 | 5 | 5
% 3 ¢t - . o — :
Aol —— , g-a+(—0.5¢* +2.5¢> +0.5¢) + 1 = —¢* +5¢* + 1.5 + 0.5
e 2 ST 7 '
—l 3 I 5 1 9
0——“:0 — 8 J.
) | | ; 5 19 10 2 . [ -
g-a+(qg—1)=—05¢" +25¢° +2¢— 15 —t 9 54 2
; T ] i "__4:—‘:» 8 |9

Figure 5.5.2: 2nd iteration of Example V. (part one)

are:
1st component 2nd component
T q* —4.5¢° —2¢ — 0.5 | [-0.5¢> + 2.5¢° — 0.5¢ + 2]
= 0.915564 = [0.0032972]
T —0.5¢> + 2¢* +2.5¢ — 0.5 | [0,0.5¢° — 2¢* — 2.5q + 1.5]
= (0.0811388 — [0,0.9188612]
T ¢ —4.5¢> —2q — 0.5 | [-0.5¢> + 2¢* 4+ 2.5¢ — 0.5]
= 0.915564 = [0.0811388]

Figure shows the 3rd iteration. It gives rise to:
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lg- (—0.5¢° +2.5¢° +0.5¢) = —0.5¢"* + 2.5¢" + 0.5¢°> = 0.5¢°- 1.5¢° — 2q + 0.5
& 6 2 7 |
19 10 2

__‘:‘%.i._. 5 14, 6 |2/ .||
_‘:p 3,
11 6 2 3 4
e 54 6 |2 .

— T
e

Figure 5.5.3: 2nd iteration of Example V. (part two)

lg- (—0.5¢" + 2.5¢° + 2q — 1.5) = —0.5¢" + 2.5¢° + 2¢° — 1.5q = 0.5¢" — 3.5q + 0.5
?24/ 8 491 10 2
—
(0.5¢° — 3.5g + 0.5) + (—0.5¢° + 2.5¢° + 0.5g) + 1 = 2.5¢° — 3¢ + 1.5|
B 2230, 4 | -(;\2—05)—05&—05%
Ap— ‘:1") ‘:.6 [ 11 N q ‘q q_ - q
[(0.5¢* — 3.5q + 0.5) + (¢ — 1) = 0.5¢° — 2.5¢ — 0.5 ) —=e 3 47

Figure 5.5.4: 3rd iteration of Example V.

1st component 2nd component

Ui 0.5¢> — 3¢* +3q — 1.5 | [-0.5¢° + 2.5¢* — 0.5¢ + 2]
= 0.594198 = [0.0032972]

Ui 0.5¢> —2.5¢+ 0.5 [0, —0.5¢* + 2.5¢ + 0.5]
= 0.4025048 = [0,0.5974952]

Uia 0.5¢° —3¢*+3¢—1.5 [0.5¢° — 2.5¢ + 0.5]
=0.594198 = [0.4025048]

Figure demonstrates that they are the last characteristic vectors.



72 Chapter 5. Examples
lg- (0.5¢° — 2.5q — 0.5) = 0.5¢* — 2.5¢> — 0.5¢ = 2¢° — 0.5¢° + 1.5¢ — 0.5|
2 .
; 11 " 12 1 13 2
[2-(054° — 0.54%) = 054" — 0.58° = 156 + 24° + 24— 0.9
1'4 6 2 .
. <4 3 4] -
“__‘:. — e} i
A——
t4 62 . )
‘:%.4:' > 406 2] L | 4.
—— 3 4

o

|(2¢° — 0.5¢" + 1.5¢ — 0.5) + (—0.5¢° + 2.5¢° + 0.5q) = 1.5¢° + 2¢* + 2¢ — 0.5

Figure 5.5.5: 4th iteration of Example V.

As a result, the associated matrix is

[ Ry Sy Sy S; Sy S5 S¢ Sy Ty Ty Ty U Up Uz |
R,/ 0 1 11 10 11 1 10 1 0O O O 0 0 0
S0 1 11 11 11 1 10 0 O O O 0 0 0
S| 0O 0 00 OO 10 0 00O O O O O 0 0 0

0O 0 00 00 10 0O OO O 0o O O 0 0 0
S0 0 11 10 11 1 11 0o 1 O O 0 0 0

0O o0 11 10 11 1 11 O 1 O O 0 0 0
Sy 0 0 00 0O OO O 0O O O 1 0 0 0 0

0O 0 00 00 OO 0 0O O 0o 1 0 0 0 0
Ss (0 0 11 10 11 1 10 O 1 O 1 0 0 0
S0 0 11 11 11 1 10 0O O O 1 0 0 0

O o0 11 11 11 1 10 O O O 1 0 0 0
S-10 0 11 10 11 1 11 1 O O O 0 0 0
< (0 0 11 10 11 1 11 O O O O 1 0 0
9 | 0O 0 00 0O OO O 0O O O 0 O 0 1 0
Tl 0 0 11 11 11 1 10 0 O O O 0 0 1
Ua/0 0 10 10 10 1 10 0 0 O O 0 0 0
U/ 0 0 10 10 11 0 10 0 0 0 O 0 0 0

| Ui/ 0 O 10 10 10 1 10 0 O O O 0 0 0 |

Reading from the figures, we find that

Yeore :{ él; £2+£37 £4+€57 €4+€67
Uy + Ly, Ly + lyp,
Uy +lyq, lio + U3 },

where for instance /3 means the first component of S3, {g means the first component
b3

of Ty, etc. We proceed to simplify the R.H.S.. From
0.5¢ — 1, we have

q_

5 0.5¢* + 2.5¢°

—05¢+1="1

) and a = 0.5¢% — 2.5¢* +

S_1—a

q3
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This and ¢* — 4¢® — 4¢*> — 4q + 1 = 0 give

—0.5¢5 +2.5¢° —0.5¢3 +1+a =0;
0.5¢° — 2¢* — 2.5¢3 +0.5¢> + 1 + a = 0;
—0.5¢> +2.5¢> —05g+1+a=0.

From these, (@), and the above tables of characteristic vectors, we find that indeed

i 1 —
chore:{q - ali:1727374}7
ql
because
(1 =0.5¢> —2.5¢° +0.5¢ — 1
=Ly +Lls = Ly + L1 = l12 + l13,
4 1—
61 = a = #,
q
by + 05 = —0.5¢° +2.5¢° + 0.5
= 64 + 657
qg—1 ¢ —-1—-a
by +l3="——0=——F—
2 + 3 92 q3 )
3 2 ¢ —1-a
ly+ 0y =0.5¢" —2¢" —2.5¢ + 1.5 = —————,
q
11—
g+l = —05¢2 +25¢+05=2"-"¢
q
Finally, taking A := —0.5811388 + 0.8138044¢, we record the codes of L;(A,1)
(0<j<4):
J oa(01)/AI oA(0r) /A oA(03) /A7 04(04)/A? | Code of L,
0 0.000 + 2.914% | —0.790 + 0.406¢ | —1.581 — 2.100¢ | —1.581 + 0.813: (10243)
1 2.371 — 1.693¢ 0.790 + 0.4067 | —0.790 + 2.5072 1.581 + 0.8131 (14203)
2| —2.756 — 0.945¢ | —0.128 — 0.879: 2.5 —0.813: | —0.256 — 1.7594 (30241)
3 0.832 + 2.792¢ | —0.641 + 0.6157 | —2.115 — 1.561% | —1.282 + 1.231% (10243)
4 1.789 — 2.300: 0.873 + 0.164% | —0.041 + 2.628:¢ 1.747 + 0.3281 (14203)

5.6 Conclusion

To conclude this chapter, let us first describe how we search for an example for the
case m = 4. We only present heuristic argument which reflects that we did not know
whether there existed such an example.

We think that if such an example exists, then we can find one having the sym-
metric form

0| 0|

2

%

04

0lallg—1)/2|¢g—1—alq—1"
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because this form should simplify the overlapping behavior of the IFS. It also helps
to reduce the number of unknowns: there are only two unknowns (a, ¢) instead of
four (0, 0, 03, ¢) in this situation. Observation @ (p) is a motivation too.

If & is of this form, then 0y = 205. Accordingly, L,(A,w) always has code
(.-4.--2---0--)or(-+-0---2---4---). Reviewing the strategy used in Chapter
for the case m = 3, we have the following ideas:

1. For a 4-tuple ®, the codes making the situation intricate were (1302) and
(1032), and the “compulsory digits” (defined informally in the proof of p.
Lemma {.§) were ¢ — 1 — a and ¢ — 1 — b. This time, the special codes are
(10243) and (14203), and the “compulsory digit” is ¢ — 1 — a.

2. The proof of Lemma @ (p@) works, so that |A| < |1+ ca(a)l.
3. The proof of Lemma @ (p@) works, so that

> loaly) =1

oala) + 1 '
A

for all y € Yeore.
4. The proof of Corollary (ii) (p@) works, so that R (04(a)) > 0.

Letting 7 := 04(a), we are led to consider the system of equations

(5.6) { 7= (A"—1-1)/A"

(A-1)/2 -7 = (AF =1 —71)/A%,
where (h, k) € N2, because

1. The first equation gives o4(a) = (A"—1)/(A"+1), which fulfills R (54(a)) > 0
when |A| > 1.

2. The previous strategy suggests that given y € YN (0, 1) such that R (c4(y)) <
0, its expansion by our lazy algorithm is forced to use the “compulsory digit”
and is of the following form:

k—1
-1 —1—a
y= Z : T ! .
- 1 q

—1—a
If we assume y = [2; 1] and a--—a is the last non-zero term in the expansion,

k
q
then we get the second equation of (@)

3. Solving (@), we get an equation f(A) = 0, where f(z) € Z[z] is a polynomial
whose degree increases when h, k increase. When the degree of f(z) increases,
hopefully we can have many algebraic conjugates of ¢, among which some
satisfies |A| > 1.

4. By experiment, or by our assumption that £ (ca(a)) > 0 > R (0a([2;1])), it
appears that the case h = k is not productive. Having two parameters (h, k)
instead one (h = k) increases the flexibility of our model.
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We use computer to solve a constrained version of (@) and find the promising
pairs (h,k) = (2,5) and (4, 3). Before we proceed to verify the FTC rigorously like
the previous section, we also use computer to calculate the characteristic vectors and
estimate whether it is likely or not that the FTC holds. Sample codes and output
of our computer program are provided in Appendix E and (.

Fortunately, the aforementioned methodology works and we find an example

indeed.
%k kK ok kK ok K

We end by giving miscellaneous results inspired by the examples. To begin with,
we observe that for each of them, we have #Ycore = deg g, the degree of the algebraic
number ¢. As the following proposition shows, it suggests that they are, in a certain
sense, the simplest overlapping IF'S on R having no hole in their attractors.

Proposition 5.1 (Lower bound of #Yeore)
If ® satisfies the FTC, then #Ycore > degq.

We do some preparation before giving a proof. As Ycore is a finite set when ® satisfies
the FTC, we can write Yecore d:ef{yl, ...,yn} and define y d:ef(yl, ..., yg) accordingly.

Let )
Xd:ef{Zqidi : d; € D(q), n> 1} = U q"F,,
n=1

=0
where F), is from p. Lemma @ In light of that lemma and noting that ¢"F,, C
¢ F, ., for all n > 1, we have the following result:

If ® satisfies the FTC, then for any s, € X with s < ¢, there exist
(5.7) a positive integer £ > 1 and {xi}fzo C X such that s = 29 < 21 <
<o < xy=t, where ; — ;1 € Yeore for all i € [1, /).

Proof of Proposition IS_II

For each y € Yeore CY = X — X, there exist x1, 22 € X such that y = x5 — x1. As
gX C X and @ satisfies the FTC, using (b.1) with s := qx1, t := qxs, there exist
non-negative integers Ny, ..., Ny such that

qy = Niy1 +--- Nyym.

Therefore, there exists a H x H non-negative matrix P with integer entries such

that Py = qy. Consequently, ¢ is an eigenvalue of P, and degq is not greater than

the degree of the characteristic polynomial of P, which is equal to H = #Ycore.
Q.E.D.

We use our examples to illustrate the idea. Recall that in Example IV, Yeore =
{y:}>_,, where y; := (¢ =1 —a)/q" and a := (¢ —1)/(¢*> 4+ 1). Using the calculation
of Yeore in the last part of that example, and reading from p.p4 Figure .4.2, we have

qys = q(la + €3) = (o + 19) + (b + l3) + (La+ l5) + (ba+ lg) + (2 + (11)
= 2ys + Y4 + 2ys.
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We obtain the equations for qy; (1 <i < 4) in the same way. Altogether, we have

0100 2 Y1 Y1
12 00 2 Yo Yo
0300 2 LRI I Ck
0 210 2 Ya Ya
0201 2 Ys Ys

Similarly, in the case of Example I, we have

()0 (0)

where y; 1= (¢ —m + 2)/3.
Next, we observe that many of our examples not only satisfy the FTC but also
the following condition:

(5.8) Given any y € Yeore, we have |qy — (¢ — 1)| € Yeore.

Note that if gy = Nyy1+- - Ngym, ¢—1 = Liya+- - -+ Lyyn, and |qgy — (¢ — 1)| = v,
then letting

(Ly -+ Ln) if gy >q—1

u:=(u; -+ uy) = {(Nl o+ (N;+1) --+ Ng) otherwise,

we have u-y = ¢ — 1 and

u-y+y ifqy>q-1
qy = .
u-y—y; otherwise.

Therefore, under condition (@), we can require that the matrix P in the preceding
proof is of the form

U1 -+ ULH
P = : : : + 5,
U1 -+ UHH

where u; ; are non-negative integers such that
(ui,l .« o U/’L,H)y:q_l
for all ¢ € [1, H], and that the matrix S satisfies the following property:

Each row of S has exactly one non-zero entry which is eqaul to £1.

(5.9) Consequently, for each n € N the same holds for the matrix S™.

For instance, in the case of Example IV, we have ¢ — 1 = 2y, + 2y5 and

0100 2 0200 2 0 -1 0 00
1200 2 02 00 2 1 0 00O
P=103002]]=102002]+]0 1 000
0210 2 02 00 2 0 0 100
0201 2 02 00 2 0 0 010
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Similarly, in the case of Example I with m =5 and y; = ¢/3 — 1, we have ¢ — 1 =

3-y1+2-1and
P 3 1\ (3 2 n 0 —1
- \3 3/ \3 2 0o 1)°
We have the following proposition.

Proposition 5.2 (Expansion for Yeow)

If ® satisfies the FTC and condition (@), then for all y € Yeore, there exists
{sitic; € {£(¢—1)} such that

(5.10) =35
1

where s1 = q—1 and {s;};°, is eventually periodic. Moreover, we can have uniform
pre-period and period.

Proof

Let vg be the H x 1 vector with all entries equal to ¢ — 1. The above discussion
gives gy = Py = vo + Sy, that is, y = ¢"'vo + (¢719)y. As a result,

y=q'vo+ (¢9)g Vo + (¢'9)y] =q¢ Vo +q 2Sve + (¢S y = .

As a consequence of property (@), we have the convergent series

y = f: Si_1V0 '
=1

q

Moreover, since there are only finitely many H x H matrices satisfying property
(@), there exist 7 # j such that S = S7. This implies that the expansion obtained
is eventually periodic. As y consists of all elements of Ycore, we have uniform pre-
period and period.

Q.E.D.

For instance, in the case of Example IV, we have S? = S7 and

Y1 111(1111)¢

Y2 111(1111)¢

ys | = (¢—1) [ 1212(31T11)% |,

Ya 111(1111)*

vs 111(117T)
where 1:= —1 and

w. € C c3 (€4 C5 Ce C7 1 1 1

C1C2C3(CaCsCeC7)Y 1= E‘F?—F?ﬁ- (E + E + E + $> <1 + E + ? + q—12 + - ) .

5

Alternatively, since S® = —S®, we also have e.g.

q—1 —(¢—1) —(¢—1) (q—l q—1>< 1 1 1 )
+ + + + l——=+———+---).
q q? q q q° @ ¢ ¢

Y1 =
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We finish by giving two corollaries of the preceding proposition. Firstly, given
an algebraic conjugate A of ¢ with |A| > 1, we can obtain a simple upper bound of
the set 0 4(Yeare) in terms of A. For, given y € Yeore and expansion (H.1(), by using
the FTC (p.[L1] Proposition R.2) or by using periodicity to write the expansion as a
finite sum, we have

CI=oals)| = £(A |A—1| |A—1]
|UA<3/)’—‘ZT‘— Z Z |A|—1'
1 1 1

This bound is sharp in the case of Example I and II with m = 5. In the former case,

we have ¢? —6¢+6 =0, g =3+ 3, A=3— 3,

_(q/3-1\ _ (1)~
and |[A—1]/(|A| = 1) = 1 = y,. In the latter case, we have ¢*> — 4q — 6 = 0,

qg=2++v10, A=2—+/10, and
1)w
I)w .

_f —2¢+11Y\ _ 1(1
= ((5q - 23)/3) == (1(1
As 1(11)* matches the sign change of A, we have o4(y1) = |A — 1| /(JA] — 1).

The second corollary of Proposition @ is that, since Ycore is the building block of
the set X (property (@)), we can represent the set (¢—1)7'X in terms of expansions

in ¢ in a structured Way We use Example IV to illustrate the idea. Table lists
the elements of (¢—1)~ In the table, the column of z — z*
is obtained from Flgure and “rep = (n1,n2,n3,n4,n5)" means that

xr= Zle n;y;. In the last Column we take
3
2 24 25 1 1 1
Z_120.212923(2425) 1= -+ (— + —) (1 - =+ =—=+4"- ) )
;_:1 g ¢ P 2 ¢

a:= 10,b := 11,c := 12, etc, and let X := —x for any x. For instance, we have
13.103030 = y; + 6y2 + y4 + 6ys, and (¢ — 1)7113.103030 = 3.417211 has expansions

4 12 0 (2 12 11 1
—+t o+ (=) (-5 + 55+

g ¢ ¢ \¢ P ¢ gt ¢
and
b2 b 0 (20 (il
g ¢ ¢ \¢ ¢ ¢ ¢ ¢

Multiple expansions are obtained through relations like .440(04) = 1.000(00)%.
For instance, we have

4.437697 = .ig2(4e)” = 3.642(42)7 = 4.202(42).

We may compare these expansions to the decimal expansions of n/9, n € N.



5.6. Conclusion

ZL’—,Ii

No. reX rep

0 0 00 (0,0,0,0,0) | 0= .OOO(OO)

1 0.917937 2 (0,1,0,0,0) ]0.239393 = .111(11)7

2 1.917211 | ¢+ 45 | (0,1,0,0,1) |0.500000 = .220(02)%

3 2916484 | 44+ ¢5 | (0,1,0,0,2) |0.760606 = .331(13)%

4 | 3.834422 | l,+0s | (0,2,0,0,2) | 1.000000 = .440(04)" = 0

5 | 4.437697 | ly+ (s | (1,2,0,0,2) |1.157331 = .631(15)% = 1

6 5.355634 | lg + (10 | (1,3,0,0,2) | 1.396725 = .642(06)% = 2

7 | 6.354908 | ly+ 03 | (1,3,0,0,3) | 1.657331 = .751(17)% = 1

8 7.354181 | ¢4+ 05 | (1,3,0,0,4) | 1.917937 = .860(28)% = 0(24)"
9 8.272119 | 44+ 05 | (1,4,0,0,4) |2.157331 = .971(19)% = 2.111(11)%
10 | 9.268608 | fo + 11 | (1,4,0,1,4) |2.417211 = .a80(28)% = 0

11 | 10.186545 | £12+ t13 | (1,5,0,1,4) | 2.656605 = .b91(19)% = 2. 311

12 | 11.185819 | ly+¢3 | (1,5,0,1,5) |2.917211 = caO(Qa)w = 2.420(22)"
13 [12.185093 | ¢4+ ¢5 | (1,5,0,1,6) |3.177817 = .db1(3b)® = 2.531(33)7
14 | 13.103030 | ¢4+ 45 | (1,6,0,1,6) |3.417211 = .ec0(2¢c)® = 3.200(20)%
15 | 14.099519 | €y + ¢1; | (1,6,0,2,6) |3.677090 = .£d1(3b)¥ = 3.311(31)7
16 15.017456 612 + 613 (1, 7, 0, 2, 6) 3.916484 = geO(Qc)w = 3. 420(20)
17 [16.016730 | ¢o+ 4¢3 | (1,7,0,2,7) |4.177090 = .hf1(3d)® = 3.531(31)
18 [ 17.016004 | ¢4+ €5 | (1,7,0,2,8) |4.437697 = .ig2(4e)™ = 3.642(42)
19 [17.933941 | ¢4+ 4 | (1,8,0,2,8) |4.677090 = .jh1(3f)" = 4.311(3

20 | 18.537216 | o+ 05 | (2,8,0,2,8) |4.834422 = .kg0(4g)™ = 10.00

21 [19.455153 | b9+ L1 | (2,9,0,2,8) |5.073816 = .1h1(3h)” = 10.111

22 |20.454427 | lo+ 03 | (2,9,0,2,9) |5.334422 = mi0(4i)¥ = 10.220

23 |21.453701 | 44+ 05 | (2,9,0,2,10) |5.595028 = .nj1(5j)¥ = 10.331(13)%
24 |22.371638 | 44+l | (2,10,0,2,10) | 5.834422 = .0k0(4k)® = 11.000(00)%

Table 5.1: Representing the set X and (¢ — 1)7'X of Example IV.
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Appendix A

Finite type condition, algebraic
numbers, and density

This appendix has two purposes. The first is to introduce terminology concerning
the FTC. This part is based on [20] and [21, section 6]. The second is to give a proof
of Theorem [l E and Theorem [l . E ) respectively.
Recall that the IF'S in consideration is {y;(x) = px +b;}1,, where 0 = by < by <
- <bp,=1—pand b — b < p for all i. Write .Ad:ef{O, ...,m} and let A4,, be
the collection of all words j; - - - j,, of length n over A. Given J := j;---7j, € A,, we
write ¢ := @;, 0---0y;. . If n =0, then ¢ is just the identity function. Let P, be
the collection of all end points given by the intervals ¢;[0, 1] with J € A,. i.e.

P E{ps(0): J € Ay U{ps(1): J e A}

Since ¢o(0) = 0 and ¢,,(1) = 1, we have P, C P, for all n > 0.

Let F, o [etn) e] 1 e € anmin}. Each element A € F,, is called an n-th basic

net interval. These intervals satisfy the following properties: (i) Jacr, A = [0,1]
for any n > 0; (ii) for any Ay, Ay € F,, either Ay = Ay or int(A;) Nint(Ag) = 0
(iii) for any A € F,, (n > 1), there is a unique A € F,,_; such that A D A.

For each A € F,, we define a positive number £,(A), a vector V,(A), and a
positive integer 7, (A). Given A =: [a,b] € F,,, we define

0,(A) g (b — a)

and o
Va(A) :e[al, cak,

where a; < --- < a;, are all elements of the set
{¢"[a—@s(0)]: Je A, ¢s[0,1]N(a,b) #0}.

If n = 0, then we define r,(A) = 1. Else if n > 1, to define r,,(A), let A be the
unique element of F,_; containing A. Order the intervals from the set

[EeF: 2ChA 6@ =6A), V@ =V(A)}
by their left end points. Then r,(A) is defined to be the rank of A in this ordering.
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We call the triple
Ca(A) E (L (A), Vi(A), 1a(A))

the characteristic vector of A, which encodes the length and neighborhood infor-
mation of A. Let

Q¥C.(A):in>0, AeF,}
be the collection of all characteristic vectors. Given a = {(c1, ¢a, c3) € 2, we write

() d:efcl, V(a) d:ef02, r(a) d:efc;g.

If & satisfies the FTC, then we know from [21, Lemma 6.1] that Q is a finite set
In this case, let Q* denote the collection of all finite words over €. We define a
function ¢ : Q — Q* as follows. Given a € 2, pick some n and A € F,, such that
a=C,(A). Let Aq,...,Ag (ordered by left end points increasingly) be all elements
in F, 41 which are sub-intervals of A, and write «; := C,,41(4 ;). By [21, Lemma
6.1], the word a - - - ay depends on « only and is independent of the choice of n and
A. Therefore, we can define

() ==y ag.

Associated with ¢ is a matrix M on 2 x Q which is defined by

1 if G is a letter of ((«)
Ma Jé] = i
0 otherwise.

We have M € Mat({0,1}), where Mat(S) denotes the collection of all matrices (a; ;)
with a; j €S.

After the above preparation, we are now ready to prove Theorem (pa) The
proof is due to Feng (personal communication, 2018).

Proof of Theorem ll_ll

Write Q@ =: {ay,...,a,} and let u be the vector (Iy,...,0,) := (l(a1),...,l(aw)).
Given a € Q, pick some n and A € F,, such that o = C,(A). As

p"l(a) = length of A = Z (length of =) = Z P TH(B),

E€Fn+1, 2CA BeQ, Ma,,B:]-
we have
[ [y
L L
Note that M € Mat(Z), M > 0, and u > 0. Accordingly, we shall prove the result
by making use of the theory of non-negative matrices (c.f. [b1] for example).

!The converse also holds. One way to see this is that if Q is a finite set, then the set
{ln(A):n>0, A F,} = {{(a): a €} is bounded away from zero, so 0 is not an accumu-
lation point of Y, and so ® satisfies the FTC by [22, Theorem 1.11 and Lemma 2.1].
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By rearranging M into canonical form of irreducible components, we can write
the above equation as

T 0 0 -+ 0
P271 T2 0 AR 0 ﬁl ﬁl
(A.1) Mu=| Ps1 P2 13 --- O : =q : — qu,
. . . . N ﬁR ﬁR
Pri Pro Pps -+ Tg

where each T; is an irreducible matrix. From this equation we have Tiu; = qu;.
Since T; € Mat(Z) and u; # 0, ¢ is an algebraic integer and all of its algebraic
conjugates are eigenvalues of Ty. Moreover, as T} > 0 is irreducible, it follows that
|A| < ¢ for all algebraic conjugate A of ¢ (c.f. [51, Theorem 1.5 and 1.6]). It remains
to show that b; € Q(q) = Q|g] for all 1.

As T} > 0 is irreducible, the solution space {x: T1x = ¢gx} has dimension
one. Hence, noting that 77 € Mat(Z), from Gaussian elimination there exists
x; € Mat(Q(q)) such that T1x; = ¢x; and u; = tx; for some ¢ € R. Since u; > 0,
we can take x; > 0 and ¢ > 0.

By [21, Lemma 6.4], Q has exactly one essential class. Therefore, P; > 0, # 0.
Now (@) gives (¢f — Th)uy = Pyju; = tPy1x; =: yo, where yo > 0,# 0. As
a result, ¢ is strictly greater than the Perron-Frobenius eigenvalue of Ty (c.f. [51,
Theorem 2.1]), whence ¢ is not an eigenvalue of Ty. This implies uy = t(ql —
Ty) ' Pyyx; =: txo. We have x5 € Mat(Q(g)). As Uy > 0 and ¢ > 0, the relation
U = tXs gives xo > 0.

Again, as 2 has exactly one essential class, we have (Ps; P32) > 0,# 0. (@)
giVGS (q] — T3)ﬁ3 = P371ﬁ1 + P37262 = t(P371X1 + P372X2> =1Ys, where Y3 Z 0, 7£ 0.
The same argument as above gives Uz = t(qf — T3) ' (P31x;1 + P 9X2) =: tx3, where
x3 € Mat(Q(q)) and x5 > 0. Continuing this way until the last row block of M, we
get

(A.2) u; = tx;, x; € Mat(Q(q)), x; >0 (1 <i<R).

Observe that a := Cy([0,1]) € Q satisfies ¢(a) = 1. Therefore, there exists

1 <i < R such that u; has an entry of value 1, whence (@) gives t € Q(gq) and

u € Mat(Q(g)). The same holds for u = (ly,...,1,). Noting that the translation
parameters b; of the IFS all belong to Q(l4, ..., Ly, q), we finish the proof.

Q.E.D.

Finally, we give a proof of Theorem (p.@), which was given by Feng [22]
through an argument by Drobot [15].

Proof of Theorem m

If & satisfies the FTC, then Y has no accumulation point in R, a fortiori Y is not
dense in R.

Conversely, suppose ® does not satisfy the FTC. Fix rp € R and ¢ > 0. We
want to show that there exists y € Y such that |y — ro| < g9. Since Y = =Y and
0 € Y, we may assume 7y > 0. We claim that it suffices to show the following result:

Given any r > 0, and any positive integer M > 0, there exists y :=
(@) X, d'si €Y, where s; = si(y) € (D(q)—D(q)) and a(y) > M,
such that 0 <r —y <r(1 —1/(29)).
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For, suppose it is true. We obtain y1,...,yy € Y by applying it N times, in the
way that letting ry := rg — Zle yi, we go through the following steps successively:

— b(y1) i,
taking (r, M) = (rg, 1) )= it i), alyn) > 1
0<ro—y <ro(1—-1/(29)),
_ \b(y2)
taking (r, M) = (ry, b(y)) L= i) €siye), alyz) >b(y)
0<r—y <m(1-1/(29)),

YN)

. _ yv = S0 disilyn). alyn)>blyn—1)
taking (M) = (b)) == {o <o~ < rea(l - 1(20).

Since a(y;+1) > b(y;) for all i, we have y, :== y; + -+ + yy € Y. Also, we have
— Y« =TN-1 — YN, Whence

0<ro—ye <ry-1(l—1/(29)) = (rv—2 —ynv-1)(1 — 1/(29))
<rnoo(1-1/(29))° = (TN 5 —yn-2)(1—1/(2))"
<rns(1-1/(29)° =
<ro(1—1/(29)".

As the last expression is less than ¢y when N is large, we have verified our claim.

It remains to show (&Y). Fix r > 0 and M € N. Since ® does not satisfy the
FTC, by [22, Theorem 1.11 and Lemma 2.1], 0 is an accumulation point of Y. Our
argument now follows from [15]. Fix a large positive integer uy € N such that

1 1 1 1 1
(A.3) — <r and r+———(7‘——)§r(1——>.
qu° q  q qu° 2q
Given n € N, since Y = —Y and 0 is an accumulation point of Y, there exists z € Y
such that
0<z< =y

Accordingly, there exists v > n such that

1
qu0+1§2 q <QTO

W <z< qqurU’ therefore

Observe that q”Y C Y Hence, we have shown that: given any n € N, there
exists y(n) := ZZ nn) 4" 's; € Y, where s; € (D(q)—D(q)) and h(n) > n, such that
gt <q(n) < g

By (@), there exists Ny > 1 such that

(A.4) %3 <N°+1.

q"e qve
Define gy := v(M), g2 := v(k(M)), g3 := v(k(k(M))) and so on up to gn,. Note
that y := Zj\f:ol g; €Y, and we can write y = f(:ycz(y) ¢'s; with s; € (D(¢)—D(q))

and a(y) > M. Moreover, by the property of v(n), we have

c | No Mo
y q’u0+17 quo '
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Together with (@), we have

O<r—y<

This shows (3) and completes the proof.

Q.E.D.



86

Appendix A. Finite type condition, algebraic numbers, and density




© oo ~ =] wt - W [ -

e e N e e
0w N O g ks W N = O

Appendix B

Symbolic computation of systems
of equations

During the research, we find examples and make conjectures by solving various
systems of equations. Here we demonstrate how we use GNU Octave 5.2.0 for the
symbolic computation of (@) (p@) The purpose is to find a 5-tuple IFS such
that the associated ¢ is not a PV number. Below is the code we use. We only check
the range 1 < h, k < 10. Inside the code, we ensure the following conditions hold:

1. ¢ > 3. It is because if ¢ < 3, then [2;0] = (¢ — 1)/2 < 1, whence the IFS can
be reduced from a 5-tuple to a 4-tuple by dropping 0.

2. ¢ has a non-real algebraic conjugate A with |A| > 1.
3. We have |A| < |1+ 0a(a)l.

4. We have
> |oa(y) — 1|

oala)+ 1‘

for y = [1;0] and [2;1].

pkg load symbolic
syms t A

myPrecision = 0.0001;

for h = 1:10
eql =t — (Ah — 1)/(A"h + 1) = 0;
tExpress = solve(eql, t);

for k = 1:10
eq2 = A-1 — 2%t — 2«( Ak — 1 — t )/A"k = 0;

myAns = factor (subs(eq2, t, tExpress));
myPolyCoeffs = sym2poly (numden(1lhs (myAns)));

myRoots = roots (myPolyCoeffs) ;
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21
22
23
24
25
26
27
28
29
30

31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
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myRootAbs = abs(myRoots) ;

a=1;

algeConj = 1;

isSetAlgeConj = false;

gtOneCount = 0;

for myAbsIndex = 1 : length (myRootAbs)

if (myRootAbs(myAbsIndex) > 1 — myPrecision)
gtOneCount = gtOneCount+1;

if (abs(imag(myRoots(myAbsIndex))) < myPrecision && ..
real (myRoots(myAbsIndex)) > 3 )
q = myRoots(myAbsIndex) ;

end

if (~isSetAlgeConj && abs(imag(myRoots(myAbsIndex)))
> myPrecision)
algeConj=myRoots (myAbsIndex) ;
isSetAlgeConj = true;

end

end
end
if (q>1 && gtOneCount > 2 && isSetAlgeConj)

funTau = function_handle (tExpress);
tau = funTau(algeConj);
a = funTau(q);

if( true

&& abs(algeConj) < abs(l4+tau) + myPrecision %[A| < ..
|1+t |

&& abs((14+tau)/algeConj) > abs(tau—1) — myPrecision ..
% [(1+t)/A| >= |t—1]|

&& abs((1+tau)/algeConj) > abs((algeConj—1)/2—tau—1) ...
— myPrecision % [(1+t)/A| >= |(A-1)/2—t —1]

)

disp (7 #HH My Choice: #HH# V) ;
h
k
myAns
myPolyCoeffs
myRoots
myRootAbs
q
algeConj
a
tau
disp (" )
end
end
end
end

Below is an excerpt of the output. It shows the data for all h < 6.
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17

#####+ My Choice: #HHH
h= 2
k=5
myAns = (sym)
/ 5 4 3 2 \
(A — 1)x\A — 4xA — 3xA — 4xA — 4xA — 4/
=0
3/ 2 \
A \A + 1/
myPolyCoeffs =
1 -5 1 -1 0 0 4
myRoots =
4.83442 + 0.000001
1.00000 + 0.000001
0.28501 + 0.976791
0.28501 — 0.976791
—0.70222 + 0.553211i
—0.70222 — 0.553211
myRootAbs =
4.83442
1.00000
1.01752
1.01752
0.89395
0.89395
q= 4.8344
algeConj = 0.28501 + 0.976791i
a= 0.91794
tau = 0.22056 + 3.414111
####+ My Choice: ##HHH
h= 2
k= 6
myAns = (sym)
/ 6 5 4 3 2 \
(A — 1)x\A — 4xA — 3xA — 4xA — 4xA — 4xA — 4/
4/ 2 \
A \A + 1/
myPolyCoeffs =
1 -5 1 -1 0 0 0 4
myRoots =
4.83566 + 0.000001
1.00000 + 0.000001
0.47421 + 0.899591

=0
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76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
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0.47421
—0.44923
—0.44923
—0.88563

0.899591
0.837481i
0.837481i
0.000001

+ I+

myRootAbs =

.83566
.00000
.01693
.01693
.95035
.95035
.88563

OO O

q = 4.8357

algeConj = 0.47421 + 0.899591i
a = 0.91798

tau = 0.077114 + 1.8945631i

#H##H+ My Choice: ##

h= 2
k= 7
myAns = (sym)
/7 6 5 4 3 2 \
(A — 1)x\A — 4%A — 3xA — 4xA — 4xA — 4xA — 4xA — 4/
=0
5/ 2 \
A \A + 1/
myPolyCoeffs =

1 -5 1 -1 0 0 0 0 4
myRoots =

4.83591
1.00000
0.60139
0.60139
—0.20496
—0.20496
—0.81438
—0.81438

.000001
.000001
.815321
.815321
.961851
.961851
412311
412311

4+ L+
OO OO OO oo

myRootAbs =

.83591
.00000
.01312
.01312
.98345
.98345
.91281
191281

OO OO =

q = 4.8359
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118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165
166

167

168

169

170
171
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algeConj = 0.60139 + 0.815321i
a = 0.91799
tau = 0.036971 + 1.3550791i

####H# My Choice: #HHH

h= 2
k= 8
myAns = (sym)
/6 5 4 \
(A — 1)x\A — 4%A — 4xA — 4xA — 4/
=0
6
A
myPolyCoeffs =
1 -5 0 4 0 -4 0
myRoots =
4.83596 + 0.00000i
1.00000 + 0.000001
0.68932 + 0.737751
0.68932 — 0.737751
—0.65025 4+ 0.681751
—0.65025 — 0.681751
—0.91411 + 0.000001
myRootAbs =
4.83596
1.00000
1.00967
1.00967
0.94213
0.94213
0.91411
q = 4.8360
algeConj = 0.68932 4+ 0.737751
a = 0.91799
tau = 0.020649 + 1.0700401
#HH## My Choice : #HHH
h= 2
k= 9
myAns = (sym)
/9 8 7 6 5 4
\
(A — 1)x\A — 4xA — 3xA — 4xA — 4xA — 4xA — 4xA — 4xA — 4xA ..
— 4/
=0

T/ 2 \
A \A + 1/
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172 myPolyCoeffs =

173

174 1 -5 1 -1 0 0 0 0 0 0 4
175

176 myRoots =

177

178 4.83597 + 0.000001
179 1.00000 + 0.000001i
180 0.75198 + 0.669931
181 0.75198 — 0.669931
182 0.16509 + 0.993461
183 0.16509 — 0.993461
184 —0.46622 + 0.845621i
185 —0.46622 — 0.845621
186 —0.86884 + 0.327791
187 —0.86884 — 0.327791

188
189 myRootAbs =
190

.83597
.00000
.00712
.00712
.00708
.00708
.96563
.96563
.92861
.92861

191
192
193
194
195
196
197
198
199

SO OO ===

200
201
202 q = 4.8360

203 algeConj = 0.75198 + 0.669931i
200 a = 0.91799

205 tau = 0.012721 + 0.890809i

206

207 #HH My Choice: #HHH

208 h = 2

200 k = 10

210 myAns = (sym)

211

212 / 10 9 8 7 6 ) 4 3 2

213 (A — 1)x\A — 4%A — 3xA — 4xA — 4xA — 4xA — 4xA — 4xA — ..
4xA  — 4xA — 4

214

215 8 / 2 \

216 A N\A + 1/

217

218 \

219 /

220 -=0

221

222

223

224 myPolyCoeffs =

225

226 1 -5 1 -1 0 0 0 0 0 0 0 4
227

228 myRoots =



229

230 4.83598 4+ 0.000001
231 1.00000 + 0.000001
232 0.79790 + 0.611561
233 0.79790 — 0.611561i
234 0.29680 + 0.96472i
235 0.29680 — 0.964721i
236 —0.29136 + 0.938141i
237 —0.29136 — 0.938141i
238 —0.75572 + 0.568201
239 —0.75572 — 0.568201
240 —-0.93121 + 0.000001

241

242 myRootAbs =
243

.83598
.00000
.00531
.00531
.00934
.00934
.98235
.98235
.94550
.94550
.93121

244
245
246
247
248
249
250
251
252
253

O OO OO F =

254
255
256 q = 4.8360

257 algeConj = 0.79790 4+ 0.611561

258 a = 0.91799

250 tau = 0.0084051 + 0.76642791

260

261  #H#HH My Choice: #HH#H

262 h = 3

%3 k = 7

261 myAns = (sym)

265

266 /7 6 5 4 3 2 \

267 (A — 1)x\A — 4%A — 4xA — 3xA — 4xA — 4xA — 4xA — 4/

268 =0
269 4 / 2 \

270 A x(A + 1)*\A — A + 1/

271

272 myPolyCoeffs =

273

274 1 =5 0 1 -1 0 0 0 4

275

276 myRoots =

277

278 4.96758 4+ 0.000001
279 1.00000 + 0.000001
280 0.62233 4+ 0.795291
281 0.62233 — 0.795291
282 —0.89303 + 0.364561
283 —0.89303 — 0.364561
284 —0.21309 + 0.896241i
285 —0.21309 — 0.896241
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287 myRootAbs =
288

96758
.00000
.00984
.00984
.96458
.96458
.92123
.92123

289
290
291
292
293
294
295

OO OO ==

297
208 q = 4.9676

209 algeConj = 0.62233 4+ 0.79529i

300 a = 0.98382

301 tau = 0.33454 + 4.655071i

302

303 #H#HHF My Choice: #HHH

304 h = 3

305 k = 8

306 myAns = (sym)

307

308 /7 6 5 4 2 \
309 (A — 1)x\A — 5xA 4+ A — 4xA — 4xA — 4/
310 =0
311 5/ 2 \

312 A *\A — A + 1/

313

314 myPolyCoeffs =

315

316 1 —6 6 -5 4 —4 4 —4 4

317

318 myRoots =

319

320 4.96762 4+ 0.000001
321 1.00000 + 0.000001
322 0.70564 + 0.725511
323 0.70564 — 0.725511
324 0.00453 + 0.948721
325 0.00453 — 0.948721i
326 —0.69398 + 0.625911i
327 —0.69398 — 0.625911i

328

320 myRootAbs =
330

.96762
.00000
.01207
.01207
.94873
.94873
.93455
.93455

331
332
333
334
335
336
337

OO OO =R

338
339
30 q = 4.9676

3a1 algeConj = 0.70564 + 0.725511i
342 a = 0.98382

343 tau = 0.13600 + 2.557671i

344



345
346
347
348
349
350

351

352

353
354
355
356
357

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

95

#####+ My Choice: #HHH
h= 3

k= 9
myAns = (sym)
/9 8 7 6 5 4 3
\
(A — 1)x\A — 4xA — 4xA — 3xA — 4xA — 4xA — 4xA — 4xA — 4xA ..
— 4/
=0
6 / 2 \
A x(A+ 1)x\A — A+ 1/
myPolyCoeffs =
1 =5 0 1 -1 0 0 0 0 0 4
myRoots =
4.96763 + 0.000001
1.00000 + 0.000001
0.76453 + 0.662231
0.76453 — 0.662231
0.17572 4+ 0.953981i
0.17572 — 0.953981i
—0.93453 + 0.296831
—0.93453 — 0.296831
—0.48954 + 0.793941
—0.48954 — 0.79394 i
myRootAbs =
4.96763
1.00000
1.01147
1.01147
0.97003
0.97003
0.98054
0.98054
0.93273
0.93273
q= 4.9676
algeConj = 0.76453 + 0.662231i
a = 0.98382
tau = 0.074306 + 1.8278761
##H#H+ My Choice: ##HH#
h= 3
k= 10
myAns = (sym)
/9 8 7 6 4 2 \
(A — 1)x\A — 5xA 4+ A — 4+A — 4xA — 4xA — 4/
=0
T/ 2 \
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400 A \A — A+ 1/

401

102 myPolyCoeffs =

403

404 1 -6 6 -5 4 —4 4 -4 4 -4 4
405

1206 myRoots =

407

108 4.96763 4+ 0.000001
409 1.00000 + 0.000001
410 0.80757 4+ 0.606571
411 0.80757 — 0.606571
412 0.30994 + 0.934641i
413 0.30994 — 0.934641i
414 —0.79886 + 0.52788i
415 —0.79886 — 0.527881i
416 —0.30247 + 0.892441
417 —0.30247 — 0.892441i

418

119 myRootAbs =
420

96763
.00000
.01000
.01000
.98469
.98469
95751
95751
.94230
.94230

421
422
423
424
425
426
427
428
429

OO OO OO

430
431
32 q = 4.9676

433 algeConj = 0.80757 4 0.606571

3¢ a = 0.98382

435 tau = 0.046163 + 1.446707i

436

437 ##H# My Choice: ####

433 h = 4

439 k = 3

410 myAns = (sym)

441

442 / 4 3 2 \
443 (A — 1)x\A — 4xA — 4xA — 4xA + 1/

444 =0

445 4

446 A +1
447

148 myPolyCoeffs =

449

450 1 -5 0 0 5 —1
451

452 myRoots =

453

454 4.96069 + 0.000001
455 —0.58114 + 0.813801i
456 —0.58114 — 0.813801
457 1.00000 + 0.000001



459
460
461
462
463
464
465
466

468
469
470
471
472
473
474
475
476
477
478

479

480

481
482
483
484
485
486

488
489
490
491
492
493
494
495
496

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

97

0.20158 + 0.00000i

myRootAbs =
4.96069
1.00000
1.00000
1.00000
0.20158
q= 4.9607
algeConj = —0.58114 + 0.813801i
a = 0.99670
tau = —9.7067e—15 + 2.9143e+4001i

####H#+ My Choice: #HH#H

h= 4
k=9
myAns = (sym)
/9 8 7 6 5 4
\
(A — 1)x\A — 4%A — 4xA — 4xA — 3xA — 4xA — 4xA — 4xA — 4xA ..
— 4/
=0
5 /4 0\
A \A + 1/
myPolyCoeffs =
1 -5 0 0 1 -1 0 0 0 0 4
myRoots =
4.99358 + 0.000001
1.00000 + 0.000001
0.76784 + 0.649031
0.76784 — 0.649031
0.14396 + 0.936141
0.14396 — 0.936141i
—0.53277 + 0.841061
—0.53277 — 0.841061
—0.87582 + 0.352331
—0.87582 — 0.352331
myRootAbs =
4.99358
1.00000
1.00539
1.00539
0.94714
0.94714
0.99560
0.99560
0.94403
0.94403
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514 q = 4.9936

515 algeConj = 0.76784 + 0.649031i
516 a = 0.99679

517 tau = 0.38637 + 5.896091i

s19  #H#HHF My Choice: #HH#
520 h = 4

521 k = 10

522 myAns = (sym)

524 / 10 9 8 7 6 5 4 3 2

525 (A — 1)x\A — 45A — 4xA — 4xA — 3xA — 4xA — 4xA — 4xA — ..
4+A — 4xA — 4

526

527 6 / 4 \

528 A \A + 1/

529

530 \

531 /

532 -—=0

533
534

535

536 myPolyCoeffs =

537

538 1 =5 0 0 1 -1 0 0 0 0 0 4
539

540 myRoots =

541

542 4.99358 4+ 0.000001
543 1.00000 + 0.000001
544 0.81142 + 0.597051
545 0.81142 — 0.597051i
546 0.28909 + 0.915211
547 0.28909 — 0.915211i
548 —0.34784 + 0.910671i
549 —0.34784 — 0.910671
550 —0.78596 + 0.595731
551 —0.78596 — 0.595731i
552 —-0.92700 + 0.000001

554 myRootAbs =

.99358
.00000
.00741
.00741
.95978
.95978
.97484
.97484
.98622
.98622
.92700

S
)
=

OO O OO OO

s6s = 4.9936
s69 algeConj = 0.81142 4+ 0.597051



so a = 0.99679
s71 tau = 0.16641 + 3.201031i

572

573 My Choice: #HHH

574 h = 5

575 k= 4

576 myAns = (sym)

577

578 / 4 3 2 \

579 (A— 1)x\A — 5%xA + A — 5xA + 1/

580 =0
581 4 3 2

582 A -A +A —-A+1

583

ssa myPolyCoeffs =

585

586 1 -6 6 —6 6 -1
587

sss myRoots =

589

590 4.99227 4+ 0.000001

591 —0.09629 + 0.995351i

592 —0.09629 — 0.995351i

593 1.00000 + 0.000001

594 0.20031 4+ 0.000001

595

5906 myRootAbs =

597

598 4.99227

599 1.00000

600 1.00000

601 1.00000

602 0.20031

603

604 q = 4.9923

605 algeConj = —0.096291 + 0.9953531
606 a = 0.99936

607 tau = —2.2011e—15 + 1.6521e+00i

608
600 H#HH#HH# My Choice: #HH#
60 h = 5

611 k == 7

612 myAns = (sym)

613

614 /7 6 ) 4 3 2 \

615 (A — 1)x\A — 4xA — 4xA — 4xA — 4xA — 3xA — 4xA — 4/

616 =0
617 2 / 4 3 2 \

618 Ax(A+ H)x\A — A +A — A+ 1/

619

620 myPolyCoeffs =

621

622 1 -5 0 0 0 1 -1 0 4
623

624 myRoots =

625

626 4.99867 + 0.000001

627 1.00000 + 0.000001
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628 0.59884 + 0.754801
629 0.59884 — 0.754801i
630 —0.24259 + 0.976901
631 —0.24259 — 0.976901
632 —0.85558 + 0.344591i
633 —0.85558 — 0.344591i

634

635 myRootAbs =
636

.99867
.00000
.96350
.96350
.00657
.00657
.92237
.92237

637
638
639
640
641
642
643

OO P OO K

644

646 q = 4.9987

647 algeConj = —0.24259 + 0.976901i
648 a = 0.99936

610 tau = 0.52441 + 5.545841i

651 #HHHE My Choice: #HHHF
652 h = 6

653 k = 5

654 myAns = (sym)

656 / 6 5 4 3 2 \

657 (A — 1)x\A — 4xA — 4xA — 4xA — 4xA — 4xA + 1/

658 =0
659 / 2 \ / 4 2 \

660 \A + 1/5\A — A + 1/

662 myPolyCoeffs =
664 1 =5 0 0 0 0 5 -1

666 myRoots =

668 4.99846 + 0.000001
669 —0.83080 + 0.5565H71
670 —0.83080 — 0.556571
671 0.23154 + 0.972831i
672 0.23154 — 0.972831i
673 1.00000 + 0.000001
674 0.20006 4+ 0.000001

675
676 myRootAbs =

.99846
.00000
.00000
.00000
.00000
.00000
.20006

678
679
680
681
682
683

O = = = =

684
685



686
687
688
689
690
691
692
693
694
695
696

697

698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
7

iy
©

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

101

q= 4.9985
algeConj = —0.83080 + 0.55657 i
a = 0.99987
tau = —1.5065e—14 4+ 4.9341e400i

#####+ My Choice: #HHH
h= 6

k=9

myAns = (sym)

/9 8 7 4
\
(A — 1)x\A — 4xA — 4xA — 4xA — 4xA — 4xA — 3xA — 4xA — 4xA ..
— 4/
=0
3/ 2 \ /42
A \A + 1/x\A — A + 1/
myPolyCoeffs =

1 -5 0 0 0 0 1 -1
myRoots =

4.99974
1.00000
0.75140
0.75140
0.14495
0.14495
—0.90460
—0.90460
—0.49162
—0.49162

.000001
.000001
631731
631731
997111
9971114
.365831
.365831
.785601
.785601

L+t
OO OO OO OO oo

myRootAbs =

199974
.00000
.98167
.98167
.00759
.00759
97577
97577
.92674
.92674

OO OO R EH OO

q = 4.9997

algeConj = 0.14495 4+ 0.997111i
a = 0.99987

tau = 0.12851 + 2.156571
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Appendix C

Numerical computation of
characteristic vectors

We use Scilab 6.1.0 for the numerical computation of characteristic vectors. Below
is the code we use. Inside the code, we make an assumption that the length of
the second components of the characteristic vectors are less than 10. The constant
typeVectorAllowedLength corresponds to this upper bound. The meanings of the
parameters of this program are as follows.

1. contractInv: the value of ¢.
2. myDigitSet: the value of {0y, ...,0n}.
3. testLv: the number of iterations of the IFS we would like to examine.

4. outputType: “0” means listing all characteristic vectors given by the 1-st, 2-
nd, ..., testLv-th basic net intervals. “1” means just listing the characteristic
vectors given by the testLv-th basic net intervals.

function [x]=listCharVect(contractInv, myDigitSet, testLv, outputType)

//outputType:
//0 — default
//1 — last testLv Only

myPrecision = 0.000001;
typeVectorAllowedLength = 10;

// a fundamental interval is an n—th basic net interval times ¢ n ..
for some n
fundamentallntervals = [];

// the characteristic vectors will be stored in the below array
typeCoding = [];
typeCodinglndex = 1;

currentLv = 0;

prevLvCombine = [0];
thisLvCombine = [];

103
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21 // check correct normalization
22 if ( abs( myDigitSet(length (myDigitSet)) — (contractInv—1) ) > ..
myPrecision )

23 disp ("Wrong normalization”);
24 return;

25 end

26

27 // check if the intervals overlap
25 for i=2:length (myDigitSet)

29 if myDigitSet(i)—myDigitSet(i—1)>= 1 + myPrecision
30 disp ("Gap too large:” + string(myDigitSet(i)) +"—"+ ...
string (myDigitSet (i—1)));

31 return;

32 end

33 end

34

35 while currentLv < testLv

36 currentLv = currentLv+1;

37

38 diSp("////// I/////////'I/”//////'//I/H/I/////// //// ///'”//// Level 7 + string(currentLv) + 7
/'///'/// /'I////'I////// // : ///' ///'//” //'I/'////'/// 'I////'//////// 'I/ //////I'm) ;

39

40 thisLvTailArray = contractInv * prevLvCombine;

41

12 thisLvCombine = [];

43 thisLvCombinelndex = 1;

44

45 if currentLv==1

46 thisLvCombine = myDigitSet ;

a7 else

a8 for digitIndex = 1:length (myDigitSet)

49 for thisLvTaillndex = 1:length (thisLvTailArray)

50

51 thisLvCombine (thisLvCombinelndex) = ...

myDigitSet (digitIndex) + ..
thisLvTailArray (thisLvTaillndex) ;

52

53 thisLvCombinelndex = thisLvCombinelndex+1;

54 end

55 end

56 end

57

58 thisLvCombine = uniqueAscArray (gsort (thisLvCombine, 'g', 'i'),
myPrecision); // 'i' means ascending

59 rightEndPoints = thisLvCombine + 1;

60 allEndPoints = uniqueAscArray (gsort ([thisLvCombine ...
rightEndPoints], 'g', 'i'), myPrecision);

61

62 prevLvCombine = thisLvCombine;

63

64 if (outputType==1 && currentLv < testLv )

65 continue;

66 end

67

68 orilntervalFirstReachIndex = 1;

69 for endPointIndex = 1:length(allEndPoints)—1

70

71 fundaLeftEnd = allEndPoints(endPointIndex);



72
73
74

75

76
7
78
79
80

81
82

83

84
85
86
87
88
89
90

91

92
93
94
95
96
97
98
99
100

101
102

104
105
106
107

109
110
111
112
113
114
115
116
117
118

105

fundaRightEnd = allEndPoints (endPointIndex+1);

fundamentallntervals (currentLv, end PointIndex, 1) = ...
fundaLeftEnd ;

fundamentallntervals (currentLv, endPointIndex, 2) = ..
fundaRightEnd ;

type2ndCompForThisFunda = [];

firstReach = 0;
for orilntervalLeftEndIndex = orilntervalFirstReachIndex:
length (thisLvCombine)

// an original interval is of the form ...
[dO+qxdl+4...4+q nxdn, dO+q*xdl+...+q nxdn+1]
orilntervalLeftEnd = ..
thisLvCombine (orilntervalLeftEndIndex) ;
orilntervalRightEnd = orilntervalLeftEnd+1;

if (orilntervalLeftEnd >fundaRightEnd)
break ;
end

// if the left end point of the funda interval equals
the left end point of an original interval

if ( abs( orilntervalLeftEnd — fundaLeftEnd ...
)<myPrecision )

type2ndCompForThisFunda = [type2ndCompForThisFunda 0];

if (firstReach = 0)
firstReach = 1;
end

// if an original interval contains the funda interval

elseif ( ( orilntervalLeftEnd < fundaLeftEnd +
myPrecision ) && ( fundaRightEnd < ...
orilntervalRightEnd + myPrecision ) && ( abs(
orilntervalRightEnd — fundaLeftEnd )> myPrecision ) )

type2ndCompForThisFunda = [type2ndCompForThisFunda ...
fundaLeftEnd—orilntervalLeftEnd |;

if (firstReach = 0)
firstReach = 1;
end

end

if (firstReach = 1)
orilntervalFirstReachIndex = orilntervalLeftEndIndex;
firstReach = 2;

end

end

// store the characteristic vector
typeCoding (typeCodingIndex ,:) = ...



119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155

156
157
158
159

161
162
163
164

166
167
168
169
170
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[(fundaRightEnd—fundaLeftEnd) type2ndCompForThisFunda ...
—1lxones (1, typeVectorAllowedLength — ..
length (type2ndCompForThisFunda) ) | ;

typeCodingIlndex = typeCodinglndex+1;

end
end

x = uniqueType (typeCoding, myPrecision);
disp (”Size: 7 + string(size(x,1)));

endfunction
function [rtn]= uniqueAscArray(input, precision)
rtn = [0];

for inputIndex = 1:length(input)
if ( abs( input(inputIndex) — rtn(length(rtn)) ) > precision )
rtn = [rtn input(inputlndex)];
end
end
endfunction

function rtn= myGsortFun(input)
rtn = int (100000xinput);

endfunction

function [rtn]= uniqueType(input, precision)
rtn = [];
rtnNo = 0;

for inputIndex = 1:length (input(:,1))

isConsidered = 0;
for tempRtnIndex = 1:length(rtn(:,1))
if ( abs( input(inputIndex,1) — rtn(tempRtnIndex,1) ) < ..
precision )

allEqual = 1;
for remainingRowIndex = 2:length (input (inputindex ,:))
if ( abs( input(inputIndex ,remainingRowIndex) — ...
rtn (tempRtnIndex ,remainingRowIndex) ) > ..
precision )
allEqual = 0;
break ;
end
end

if (allEqual ==1)
isConsidered = 1;
end
end
end

if (isConsidered = 0)

rtnNo = rtnNo +1;

rtn (rtnNo, :) = input(inputlndex ,:);
end
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end
rtn = gsort(rtn, 'Ir'
endfunction

"i', list (myGsortFun));

Sample output for Chapter B Example V is as follows. It demonstrates numerically
that, ignoring the third components of the characteristic vectors, the 1st iteration
of the IFS gives rise to seven characteristic vectors, the 2nd iteration gives three
more, so does the 3rd, and there is no new characteristic vector starting from the

4th iteration.

—> q = roots ([1 —4 —4 —4 1]) (1)

q =

4.9606929

—> a =
a =

(a74-1)/(q"4+1)

0.9967028

—> [x] = listCharVect (q,

M/ ///// /I/////I//////////I ///,/ I/ //// I/,/// I////I////I/I/ LeV,el 1 I/ //////// //I I/,I////// /I/ I//////////I ///I//////// I/,I// //I ;
"Size: 77

X =
0.0032972 0.9967028 . -1. -1. -1. -—-1. —-1. —1.
0.0163564 0.9836436 0. -1. -1 -1. -1. -1. -—1.
0.9672873 0.0163564 -1. -1. -1. -—-1. —-1. —1. —1.
0.9803465 0.00329v2 -1. -1. -1. -—-1. -—-1. —1. —1.
0.9803465 0.0163564 -1. -1. -1. -—-1. —-1. —-1. —1.
0.9967028 0. -1 -1 -1 -1. -1. -1. -1.
0.9967028 0.00329v2 -1. -1. -1. -—-1. -—-1. —1. —1.

—> [x] = listCharVect(q, [0 a (q—1)/2 q—1-a q—1], 2, 0)
. l//////// ////‘ ///‘I/// ////I//////////////// ///// LeVel 1 y ///‘I////// ///////// ‘////////////I/// ///‘////‘ ”I/////// I////‘I//TT
Rzl TN iz
"Size: 107

X =
0.0032972 0.9967028 0. -1. -—-1. -1. -—-1. —-1. -—I1.
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Appendix C. Numerical computation of characteristic vectors
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