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Let q > 1 and D = {∂0, . . . , ∂m} be a set of real numbers such that 0 < ∂i+1−∂i ≤
(∂m−∂0)/(q−1) for all 0 ≤ i ≤ m−1. The pair (q,D) can be treated as an iterated
function system or a numeration system. This thesis investigates when Φ = (q,D)
satisfies the finite type condition (FTC), that is, when the set{

n∑
i=0

qi(si − ti) : n ≥ 0, si, ti ∈ D

}

has no accumulation point. It is proved that

I. If 1 ≤ m ≤ 3 and Φ satisfies the FTC, then q is a Pisot–Vijayaraghavan
number (PV number).

II. If m = 4 and Φ satisfies the FTC, then every algebraic conjugate A of q with
|A| ≥ 1 is not a real number.

III. For each m ≥ 4, there exists Φ satisfying the FTC, and the associated q is not
a PV number.



記數系統和有限類條件

摘要

設 q > 1，D = {∂0, . . . , ∂m} 為一組實數，其中對於所有 0 ≤ i ≤ m − 1，皆有
0 < ∂i+1 − ∂i ≤ (∂m − ∂0)/(q − 1) 成立。這樣一對 (q,D) 可當成一個迭代函數
系統或一個記數系統。本論文研究 Φ = (q,D) 如何才滿足有限類條件 (Finite
Type Condition，FTC)，即集合{

n∑
i=0

qi(si − ti) : n ≥ 0, si, ti ∈ D
}

如何才不會有聚點。本論文證明

I. 如果 1 ≤ m ≤ 3，且 Φ 滿足 FTC，則 q 是一個 Pisot–Vijayaraghavan 數
(PV 數)。

II. 如果m = 4，且 Φ滿足 FTC，則對於所有 q的共軛代數數A，如果 |A| ≥ 1，
那麼 A 便不是實數。

III. 對於所有 m ≥ 4，都存在一個滿足 FTC 的 Φ，且當中的 q 並不是 PV 數。
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simultanément, comme des géants plongés dans les années à des époques,
vécues par eux si distantes, entre lesquelles tant de jours sont venus se
placer — dans le Temps.
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like giants plunged into the years, they touch the distant epochs through
which they have lived, between which so many days have come to range
themselves — in Time.

Marcel Proust, In Search of Lost Time: Time Regained
(Translated by Andreas Mayor and Terence Kilmartin)



Chapter 1

Background

1.1 Prolegomena

In the field of fractal geometry, a central theme is to study the dimensions of fractals
[18]. Roughly speaking, fractal dimensions are non-negative real numbers general-
izing the notion of dimensions of familiar geometric objects (e.g. straight lines,
surfaces) to fractal sets, giving quantitative descriptions of how the space is occu-
pied [18]. Usually, the estimation of dimensions is not an easy task. Noting that
a large class of interesting fractals, including the middle third Cantor set, the von
Koch curve, and the Sierpinski gasket, can be constructed by using iterated function
systems (IFS), mathematicians find that if an IFS satisfies certain separation condi-
tions, then an understanding of the associated fractal and its dimensions follows. An
example of such conditions is the finite type condition (FTC). If an IFS satisfies the
FTC, then the associated fractal will only repeat finitely many overlapping patterns
in all scales. Therefore, we are able to reach an understanding of the fractal by a
finite number of steps.

The FTC also plays a role in the study of numeration systems (also called
number systems) in number theory and computer science. We are used to rep-
resenting real numbers by decimal expansions, which use β = 10 as the base and
D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} as the set of digits. If we call (β,D) a numeration sys-
tem, then as a generalization, different β and D may also be used. The new system
obtained may or may not possess the same properties as the ordinary decimal system
does, and the resulting expansions are called β-expansions in the literature. Noting
that the decimal expansion of a real number can be obtained by an iterative algo-
rithm, we see that each numeration system corresponds to an IFS on R. It follows
that if an IFS on R satisfies the FTC , then we immediately have an understanding
of the structure of the associated numeration system.

In view of the above discussion, it is natural to ask: What are the necessary and
sufficient conditions for an IFS to satisfy the FTC? Are there any simple criteria
or algorithms for verifying if an IFS satisfies the FTC? Up to now, the existing
literature only provides partial answers to these questions, and it is observed that
Pisot–Vijayaraghavan numbers (PV numbers for short) may play a crucial role in
this problem (a PV number is a real algebraic integer which is strictly greater than
1, while all of its algebraic conjugates have absolute values strictly less than 1).
Although there are examples showing that the involvement of PV numbers is not

1



2 Chapter 1. Background

necessary for the FTC (e.g. [40, Example 5.5]), all of them have holes in their
“attractors”. On the other hand, it was found that for some class of IFS on R without
hole in their attractors, the necessary and sufficient condition is that the parameters
involved must be PV numbers [1, 22]. Does the same hold for a wider class of IFS
on R? If not, then how do we construct counterexamples and how do they look like?
To date, there are only a few literature on this problem, and the results obtained
still do not provide a complete picture. In view of the relationship between this
problem and the study of fractal geometry, number theory and computer science, a
further investigation of the issue should be beneficial.

1.2 Purpose of the research
We consider a class of homogeneous iterated function systems (IFS) on R having
the form Θ

def= {ρx+ ci}mi=0 with 0 < ρ < 1, c0 < c1 < · · · < cm, and the attractor
being a closed interval [L,R], so that

[L,R] =
m∪
i=0

[ρL+ ci, ρR + ci].

This implies

(i) ρL+ ci+1 ≤ ρR + ci, whence ci+1 − ci ≤ ρ(R− L);

(ii) c0 = (1− ρ)L and cm = (1− ρ)R.

Let q = q(Θ)
def= 1/ρ, DΘ

def= {qci}mi=0, (DΘ − DΘ)
def= {δ1 − δ2 : δ1, δ2 ∈ DΘ}, and

YΘ
def=
{

n∑
i=0

qisi : n ≥ 0, si ∈ (DΘ − DΘ)

}
.

In view of numeration system, we may call q a base, DΘ a set of digits, and YΘ the
associated spectrum. We say that Θ satisfies the finite type condition (FTC) if YΘ

has no accumulation point in R (c.f. [22, Lemma 2.1]). The purpose of the research
is to investigate what characterize the FTC for this class of IFS. In particular, we
are interested in whether q has to be a PV number.

We simplify the setting by the following normalization process. Let Φ be the
IFS

Φ
def=
{
ρx+ (ci − c0)

(1− ρ)

(cm − c0)
: 0 ≤ i ≤ m

}
def= {ρx+ bi}mi=0 .

We have

(a) 0 = b0 < b1 < · · · < bm = 1− ρ;

(b) bi+1 − bi ≤ ρ(R− L)
(1− ρ)

(cm − c0)
= ρ;

(c) [0, 1] =
∪m

i=0[ρ · 0 + bi, ρ · 1 + bi].
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In addition, if YΦ has no accumulation point in R, then so does YΘ, and vice versa.
As a result, we can restrict our attention to the class of IFS satisfying condition (a),
(b), (c).

It is hoped that through the research, the following objectives can be achieved:

1. To establish some necessary and sufficient conditions for this class of IFS to
satisfy the FTC. In particular, to understand what the role of PV numbers is
in this problem.

2. To obtain some simple criteria or algorithms for verifying if an IFS of this
class satisfies the FTC.

3. To investigate if there are examples of IFS of this class which satisfy the FTC
but use non-PV numbers as parameters, and to understand why such examples
exist or do not exist.

1.3 Main Results and the thesis structure
The starting point of the research is the following findings by Feng (personal com-
munication, 2018):

Theorem 1.1 (The IFS has algebraic parameters)
If Φ satisfies the FTC, then q is an algebraic integer, |A| ≤ q for all algebraic
conjugate A of q, and bi ∈ Q(q) = Q[q] for all i.

Here Q(q) denotes the smallest field containing q and the rational numbers Q, and
Q[q] the ring generated by q over Q. Feng (personal communication, 2018) also
suggested that the work [1] by Akiyama and Komornik could be useful. It is indeed
so. Based on the aforementioned work, as well as an earlier work [17] by Erdős
and Komornik, we are able to say something about our objectives. Recall that
#Φ = m+ 1. In this thesis, we demonstrate:

Theorem 1.2 (Main result)

I. If 1 ≤ m ≤ 3 and Φ satisfies the FTC, then q is a PV number.

II. If m = 4 and Φ satisfies the FTC, then for any algebraic conjugate A of q,
|A| ≥ 1 only if A is not a real number.

III. For each m ≥ 4, there exists Φ satisfying the FTC, and the associated q is not
a PV number.

To establish this result, we handle the real and complex algebraic conjugates of
q separately. We show that:

Theorem 1.3 (Real cases)
Let A be a real algebraic conjugate of q. If Φ satisfies the FTC and m ≤ 4, then
|A| < 1.
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Theorem 1.4 (General cases)
Let A be an algebraic conjugate of q. Suppose one of the following holds: (i)
bi/bm ∈ Q for all i; (ii) m ≤ 3. If Φ satisfies the FTC, then |A| < 1.

Observe that items I and II of the main result follow from them. Note also that
Theorem 1.4(i) includes the case {bi}mi=0 = {(1− ρ)i/m}mi=0 when (1 − ρ)/m ≤ ρ.
This situation was considered in [1, 22].

We indeed have more detailed results for the real cases. Let ∂i
def= biq, so that

Φ = {ρx+ ∂iρ}mi=0. Given an algebraic conjugate A of q, let σA: Q[q] → Q[A] be
the field isomorphism which maps q to A and leaves Q fixed. When A ∈ R, the order
relation of {σA(∂i)}mi=0 gives rise to a permutation P = P(A) of {m,m− 1, . . . , 0}.
Using a code ⟨im · · · i0⟩ to represent it, we have:

Theorem 1.5 (Forbidden patterns)
Let A be a real algebraic conjugate of q. Suppose Φ satisfies the FTC. If the code
representation of P = P(A) is in one of the following patterns, then |A| < 1.

(Pa-I) ⟨· · · 0⟩ or ⟨· · · 1⟩ or ⟨· · ·m⟩.

(Pa-I′) ⟨m · · ·⟩ or ⟨(m− 1) · · ·⟩ or ⟨0 · · ·⟩.

(Pa-II) ⟨ℓ0 · · ·m · · · (ℓ0 + 1) · · ·⟩ for some 0 ≤ ℓ0 ≤ m− 2.

(Pa-II′) ⟨· · · ℓ0 · · · 0 · · · (ℓ0 + 1)⟩ for some 1 ≤ ℓ0 ≤ m− 1.

(Pa-III)


⟨· · · (ℓ0 + 1) · · ·m · · · ℓ0 · · ·⟩ for some 0 ≤ ℓ0 ≤ m− 1, at the same time
⟨· · ·m · · · j · · ·⟩ for all 0 ≤ j ≤ ℓ0, and
⟨· · · j · · ·m · · ·⟩ for all ℓ0 + 1 ≤ j ≤ m.

(Pa-IV) ⟨ℓ0 0 · · · (ℓ0 + 1) · · ·m · · ·⟩ for some 0 ≤ ℓ0 ≤ m− 2.

(Pa-IV′) ⟨· · · 0 · · · ℓ0 · · ·m (ℓ0 + 1)⟩ for some 1 ≤ ℓ0 ≤ m− 1.

Theorem 1.6 (“125034”)
Let m = 5. Let A be a real positive algebraic conjugate of q. If Φ satisfies the FTC,
then either |A| < 1, or P = P(A) has code ⟨125034⟩.

Theorem 1.7 (“120534”)
Let m = 5. Let A be a real negative algebraic conjugate of q. If Φ satisfies the FTC,
then either |A| < 1, or P = P(A) has code ⟨120534⟩.

As Theorem 1.5 suggests, we study pattern-avoiding permutations given by the
real numbers {σA(∂i)}mi=0 for the real cases.1 To deal with complex algebraic con-
jugates, on the other hand, we study pattern-avoiding configurations2 given by the
planar point set {σA(∂i)}mi=0. We manage to handle this more complicated problem
for m ≤ 3. We note that m = 3 and m = 4 are the most intractable cases in this

1The term “forbidden pattern” and “pattern-avoiding permutation” come from combinatorics.
See e.g. [4] and [56, Chapter 1].

2The author coins this term to extend the notion of “pattern-avoiding permutation” to finite
point sets in R2. See e.g. [42] for an introduction to the study of finite point configurations.
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research: they are the cases from having a proof to having a counterexample of the
necessity of q to be a PV number.

In contrast to items I and II, item III of the main result is demonstrated by using
many concrete examples, which are discovered by educated guess and computer
experiment. We present:

Theorem 1.8 (Examples)
There exists Φ satisfying the FTC but the associated q is not a PV number. Using
A to denote an algebraic conjugate of q, we have the following examples.

I. Arbitrary m ≥ 5, m odd, and A ∈ R ∩ (1, q).

II. Arbitrary m ≥ 5, m odd, and A ∈ R ∩ (−q,−1).

III. Arbitrary m ≥ 6, m even, and A ∈ R ∩ (1, q).

IV. m = 4, |A| > 1.

V. m = 4, |A| = 1.

The above represent our major findings. We should not forget to mention an
equivalent formulation of the FTC in terms of the density of Y , which was given by
Feng [22] through an argument by Drobot [15].

Theorem 1.9 (Density of Y and FTC)
Φ satisfies the FTC if and only if Y is not dense in R.

We also remark that in regard to Theorem 1.1, Feng (personal communication,
2021) has proved a stronger result that q is indeed a Perron number3. As the proof
is involved, we shall not present it for the sake of simplicity.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We develop the thesis as follows.

• In Chapter 2, “Preparation”, we prepare the tools for proving our results.
Notation is introduced and the essence of our approach is demonstrated.

• In Chapter 3, “Real cases”, we prove our results for the real cases (Theorem 1.3,
1.5-1.7). The establishment of the theorem of “125034” (Theorem 1.6) is a
milestone of the research, as it not only reveals the possibility that q need
not be a PV number, but also sheds light on how to construct examples. We
reveal one such IFS and its properties in an interlude.

• In Chapter 4, “General cases”, we prove the theorem of the general cases
(Theorem 1.4). In particular, we engage in the intractable case m = 3. Also,
as a byproduct, we give an isolated result of pattern-avoiding configurations
for discrete geometry.

3A Perron number is a real algebraic integer which is strictly greater than 1, while all of its
algebraic conjugates have absolute values strictly less than it.
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• In Chapter 5, “Examples”, we demonstrate our examples (Theorem 1.8). As
the examples for m = 4 play a crucial role in the completeness of our main
result, we shall explicate how we discover them. This is the final chapter and
we finish by giving miscellaneous results inspired by the examples.

• There are three appendices. In Appendix A, we introduce terminology con-
cerning the FTC and give a proof of Theorem 1.1 and 1.9 respectively. In
Appendix B and C, we list some programming codes and output, which are
related to the computer experiment of this research.

A word on style. As shown in this section, we shall try to give a caption to every
result in this thesis (theorem, lemma, corollary, etc). This is inspired by the writing
of Terence Tao.

We finish this chapter by a literature review which can be skipped by the reader.

1.4 Literature review
Various separation conditions for IFS having overlaps are proposed in the literature,
and the FTC is one of them. These conditions are considered because without
imposing certain restriction on the overlapping behavior of the IFS, the analysis of
dimensions and multifractal structure is intractable. See [14] for a survey of these
conditions. It was shown in [22] that for the class of IFS studied in this research,
the FTC is equivalent to the weak separation condition discussed in [38]. In other
words, the spectrum YΦ has no accumulation point in R if and only if 0 is not an
accumulation point of YΦ.

The work [1] by Akiyama and Komornik implies that for the IFS

Φ :=

{
ρx+

i

m
(1− ρ) : 0 ≤ i ≤ m

}
,

YΦ has no accumulation point in R if and only if q := ρ−1 ≥ m + 1 or q is a PV
number. Based on this result, Feng [22] subsequently showed the corresponding
result for the density of YΦ. These findings suggest that the involvement of PV
numbers as parameters seems to play a crucial role in determining whether an IFS
can behave in a tidy way. Many research papers reveal this phenomenon (e.g.
[1, 10, 17]) or make use of it (e.g. [23, 26, 36, 40]).

In respect of the necessary and sufficient conditions for the class of IFS under
consideration to satisfy the FTC, it is known that if q is a PV number and all
of the translation parameters bi are in Q[q], then the IFS satisfies the FTC [40]
(see also [22, Theorem 1.11]). On the other hand, Feng (personal communication,
2021) found that if the FTC holds, then q must be a Perron number and all of the
translation parameters bi are in Q[q]. Although methods of checking whether an
algebraic integer is a PV number exist in the literature (e.g. [6, 9]), it seems that in
this research they cannot be applied directly.

With respect to the study of fractal geometry, we note that an IFS satisfying
the FTC has a remarkable feature: it allows a scheme to compute the Hausdorff
dimension of its attractor [40] (see [31, 36, 45] for some special cases). Also, for a
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homogeneous IFS on R, the FTC implies the multifractal formalism holds for the
associated self-similar measures [20, 21].

It is noted that the FTC can be destroyed by a small perturbation of parameters
[40]. Therefore, using a computer program to search for IFS satisfying the FTC could
be infeasible. Even if an IFS satisfies the FTC so that the number of “neighborhood
types” is finite, this number can still be very large (e.g. 4017 in an example of
[36]). Without an upper bound of such number, computer could only offer limited
assistance in this study.

On the number-theoretic side, researchers of numeration systems investigate is-
sues of unique expansions, finite expansions, periodic expansions, universal expan-
sions, etc, as well as topology properties such as discreteness and denseness of the
associated spectra. Ergodic theory also plays a role because when generating an
expansion by greedy algorithm for example, we make use of a piecewise linear ex-
panding map on the unit interval. Properties of such map have been well-studied in
the literature (e.g. [37]).

Rényi [46] and Parry [43] are pioneers of the number-theoretic and ergodicity
aspects of the issue. They considered non-integer bases and integer digits, founding
the theory of β-expansion. Since then, a lot of research has been done on this
topic, see for instance [13, 17, 33, 34, 50, 52, 55, 57]. There are also studies dealing
with integer bases and non-integer digits (e.g. [11, 31, 41]). Expansions using
two bases (corresponding to non-homogeneous IFS with two contractions) are also
considered [39]. However, it seems that unlike the fractal geometry side, on the
number-theoretic side there is only limited research on both non-integer bases and
digits. [12, 35, 36] are some examples.

Besides the base-digit construct, the terms “numeration system” and “number
system” indeed have various meanings in the literature, see e.g. [2, 3, 5, 24, 27,
28, 29, 30, 48]. A common feature among them is a systematic way to represent
numbers by words of finite or infinite length.

Topics relevant to this research include: polynomials with coefficients from a
finite set [8]; eigenvalues of non-negative matrices [32]; Rauzy fractals and central
tiles [53]; Salem numbers [54]; morphic words and substitutions [47]. For related
topics in algebra, see for instance [16, 19, 49]. For a glimpse of how this problem is
related to computer science, see e.g. [7, 25, 27, 44, 47, 48].

Finally, we note the following convention of the symbol used: the base is usually
denoted by β or q in the literature. The letter β is originated from Rényi and is used
by papers dealing with ergodic and probabilistic aspects of the issue, while papers
dealing with combinatorial and topological aspects use the letter q, following Erdős
and his collaborators [13].
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Chapter 2

Preparation

In this chapter, we prepare ourselves for proving the main result. In Section 2.1, we
introduce the notation and conventions used throughout the thesis. In Section 2.2,
we establish some preliminary results and illustrate the essence of our approach.

2.1 Notation and conventions
Let 0 < ρ < 1. We consider the IFS Φ

def={φi(x) = ρx + bi}mi=0, where 0 = b0 <
b1 < · · · < bm = 1 − ρ, and bi+1 − bi ≤ ρ for all i (we call this the overlapping
hypothesis). Let q

def= 1/ρ. Assume q is an algebraic integer and bi ∈ Q(q) = Q[q]
for all i, so that bi = gi(q) for some gi(x) ∈ Q[x]. We also assume that q /∈ N, and if
A is an algebraic conjugate of q, then |A| ≤ q. We make these assumptions in view
of Theorem 1.1 (p.3).

Define D(x) ⊆ Q[x] by D(x)
def= {xgi(x)}mi=0. Let

Y
def=
{

n∑
i=0

qisi : n ≥ 0, si ∈ (D(q)−D(q))

}
.

We say that Φ satisfies the FTC if Y has no accumulation point in R (c.f. [22,
Lemma 2.1]). Let Ycore

def=Y ∩ (0, 1]. We note that Φ satisfies the FTC if and only if
Ycore is a finite set [22].

Given any finite set E = {δ1, . . . , δL} of real numbers such that δ1 < δ2 < · · · <
δL, we define δi+1

(↓E) = δi, δ1(↓E) = −∞. For brevity we shall also write δi
↓ when

the underlying set E is clear. Let E×min def=E \ {minE}, so that for all δ ∈ E×min, we
have 0 < δ − δ↓ < ∞. Let

gapmax(E)
def=max

{
δ − δ↓ : δ ∈ E×min

}
denote the maximum gap between consecutive elements of E.

We shall use the Vinogradov notation. Given functions h, k : X → [0,∞), we
write h ≪ k if there exists a constant C > 0 such that h(x) ≤ Ck(x) for all x ∈ X.
Write h ≍ k if h ≪ k and k ≪ h.

When using the summation notation
∑t

s, we treat it as an empty sum if the
upper limit t is less than the lower limit s. For instance, we take

∑0
i=1 q

−i = 0.

9
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We use DR(ξ) to denote the closed disc with center ξ and radius R in the complex
plane. In particular, D1(1) = {z ∈ C : |z − 1| ≤ 1} is a disc lying entirely in the
closed right half plane.

Given an algebraic conjugate A of q, define σA: Q[q] → Q[A] to be the field
isomorphism which maps q to A and leaves Q fixed. In addition, given a nonzero
complex number w ∈ C \ {0}, define for each non-negative integer ℓ ≥ 0 the set

Lℓ(A,w)
def=
{

δ ∈ (D(q)−D(q)) : ℜ
(
σA(δ)w

Aℓ

)
≥ 0

}
.

We shall also write Lℓ for Lℓ(A,w) when A and w are clear from the context.
We give a code representation to each Lℓ(A,w). Write Φ

def= {ρx+ ∂iρ}mi=0, so
that D(q) = {∂i}mi=0. Suppose im · · · i0 is a permutation of m · · · 0 such that

ℜ
(
σA(∂im)w

Aℓ

)
≥ ℜ

(
σA(∂im−1)w

Aℓ

)
≥ · · · ≥ ℜ

(
σA(∂i0)w

Aℓ

)
,

where if ℜ
(
σA(∂ik)w/Aℓ

)
= ℜ

(
σA(∂ik−1

)w/Aℓ
)
, then we require ik > ik−1. By

defining
[s; t]

def= ∂s − ∂t,

we see that Lℓ(A,w) = {[is; it] : m ≥ s ≥ t ≥ 0}. In this way, we say that Lℓ(A,w)
has code ⟨imim−1 · · · i0⟩. For example, when m = 3 and Lℓ(A,w) has code ⟨2301⟩,
then

ℜ
(
σA(∂2)w

Aℓ

)
> ℜ

(
σA(∂3)w

Aℓ

)
≥ ℜ

(
σA(∂0)w

Aℓ

)
> ℜ

(
σA(∂1)w

Aℓ

)
,

and Lℓ(A,w) = {0, [2; 3] , [2; 0] , [2; 1] , [3; 0] , [3; 1] , [0; 1]}.
Associated with a given Lℓ(A,w) which has code representation ⟨im · · · i0⟩, letting

Hℓ = im (the “head”) we define

H+
ℓ = H+

ℓ (A,w)
def= {[Hℓ; it] : m ≥ t ≥ 0} def= {[Hℓ; ∗]} ,

H−
ℓ = H−

ℓ (A,w)
def= {[is;Hℓ] : m ≥ s ≥ 0} def= {[∗;Hℓ]} ,

and letting Tℓ = i0 (the “tail”),

T+
ℓ = T+

ℓ (A,w)
def= {[is;Tℓ] : m ≥ s ≥ 0} def= {[∗;Tℓ]} ,

T−
ℓ = T−

ℓ (A,w)
def= {[Tℓ; it] : m ≥ t ≥ 0} def= {[Tℓ; ∗]} .

Note that H+
ℓ ,T

+
ℓ ⊆ Lℓ and −H−

ℓ ,−T−
ℓ ⊆ Lℓ. When A is a real algebraic conjugate

of q and w = 1, the set Lℓ can be described simply. Define

P = P(A) def=L0(A, 1) = {δ ∈ (D(q)−D(q)) : σA(δ) ≥ 0} .

When A is positive, we have Lℓ ≡ P for all ℓ ≥ 0, while when A is negative, we have

Lℓ =

{
P if ℓ is even
−P if ℓ is odd.

We end this section by the following observation:
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Observation 2.1 (Appeal to symmetry)
Let A be a real conjugate of q. If Φ satisfies the FTC and P = P(A) has code
⟨im · · · i0⟩, then Φ̃

def= {ρx+ (1− ρ− bi)}0i=m also satisfies the FTC, and the associated
P̃(A) has code ⟨(m− i0) · · · (m− im)⟩.

2.2 Preliminary results and the essence of the
approach

We begin with the following proposition, which is an extension of [17, Lemma 1.4].

Proposition 2.2 (Consequence of FTC)
Let u0 ≥ 0 be an integer and {si(x)}∞i=−u0

⊆ (D(x)−D(x)). Let A be an algebraic
conjugate of q. Suppose Φ satisfies the FTC and

∑∞
−u0

si(q)
qi

= 0. We have

(a)
{
qn
∑n

−u0

si(q)
qi

}
n≥0

is a finite set.

(b)
{
An
∑n

−u0

si(A)
Ai

}
n≥0

is a finite set.

(c) If |A| > 1, then
∑∞

−u0

si(A)
Ai = 0.

Proof
By

∑∞
−u0

si(q)
qi

= 0, we have
∣∣∣qn∑n

−u0

si(q)
qi

∣∣∣ = ∣∣∣qn∑∞
n+1

si(q)
qi

∣∣∣ ≪ 1. Since Y has no
accumulation point in R, we get (a). As a result, there exist n1, . . . , nk ≥ 0 such
that {

qn
n∑

−u0

si(q)

qi

}
n≥0

=

{
qn1

n1∑
−u0

si(q)

qi
, . . . , qnk

nk∑
−u0

si(q)

qi

}
.

Hence, given any N ≥ 0, there exists nj such that qN
∑N

−u0

si(q)
qi

= qnj
∑nj

−u0

si(q)
qi

.

Note that xn
∑n

−u0

si(x)
xi ∈ Q[x] for all n ≥ 0. Therefore, since A is an algebraic

conjugate of q, we have AN
∑N

−u0

si(A)
Ai = Anj

∑nj

−u0

si(A)
Ai , whence{

An

n∑
−u0

si(A)

Ai

}
n≥0

=

{
An1

n1∑
−u0

si(A)

Ai
, . . . , Ank

nk∑
−u0

si(A)

Ai

}
,

and (b) follows. In particular,
∣∣∣An

∑n
−u0

si(A)
Ai

∣∣∣ ≪ 1. Hence, if |A| > 1, then∣∣∣∑n
−u0

si(A)
Ai

∣∣∣≪ |A|−n → 0 as n → ∞, which shows (c).
Q.E.D.
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Next, we present a lazy algorithm which is inspired by [17, Lemma 1.6-1.8].

Proposition 2.3 (Lazy algorithm)
Let {Ei}∞i=1 be a sequence of finite sets of real numbers. Suppose there is a constant
C > 0 such that −C ≤ minEi ≤ maxEi ≤ C for all i ≥ 1.

Let
∑∞

i=1 pi be a convergent series, where pi > 0 for all i. Let x ≤
∑∞

i=1(maxEi)pi.
Define ti ∈ Ei inductively for all i ≥ 1 as follows. Let j ≥ 1 and suppose that ti is
already defined for all 1 ≤ i < j. Then define tj := δ, where δ ∈ Ej satisfies∑
1≤i≤j−1

tipi + δ(↓Ej)pj +
∑
i≥j+1

(maxEi)pi < x ≤
∑

1≤i≤j−1

tipi + δpj +
∑
i≥j+1

(maxEi)pi.

We have

(i) x ≤
∑∞

1 tipi.

(ii) If ti ̸= minEi infinitely often, then x =
∑∞

1 tipi.

(iii) Suppose for all ℓ ≥ 1, we have

(2.1) gapmax(Eℓ) ≤ p−1
ℓ

∞∑
i=ℓ+1

(maxEi −minEi) pi.

Then for all x ∈ [
∑∞

1 (minEi)pi,
∑∞

i=1(maxEi)pi], this algorithm gives x =∑∞
1 tipi.

Proof

(i) For all j ≥ 1 we have x ≤
∑j

1 tipi +
∑∞

j+1(maxEi)pi. Letting j → ∞ we get
the result.

(ii) Suppose tj ̸= minEj. Then x >
∑

1≤i≤j−1 tipi + t↓jpj +
∑

i≥j+1(maxEi)pi with
t↓j ∈ Ej. Therefore, if tj ̸= minEj infinitely often, then letting j → ∞ through
these indices we have x ≥

∑∞
1 tipi. Together with (i) we get x =

∑∞
1 tipi.

(iii) If on the contrary x <
∑∞

1 tipi, then by part (ii) all but a finite number of
ti equal minEi. It is impossible that ti = minEi for all i ≥ 1, for otherwise
x <

∑∞
1 tipi =

∑∞
1 (minEi)pi, contradicting the hypothesis on x. Hence there

is a last index j ≥ 1 such that tj ̸= minEj. Then

j−1∑
1

tipi + tjpj +
∞∑
j+1

(minEi)pi =
∞∑
1

tipi > x >

j−1∑
1

tipi + t↓jpj +
∞∑
j+1

(maxEi)pi.

However this contradicts (2.1).
Q.E.D.
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The following result describes the sets H±
ℓ and T±

ℓ .

Lemma 2.4 (Structure of H±
ℓ , T±

ℓ )
For any algebraic conjugate A of q, and any nonzero w ∈ C\{0}, with Lℓ = Lℓ(A,w),
H±

ℓ = H±
ℓ (A,w), T±

ℓ = T±
ℓ (A,w), the following hold.

(a) gapmax(H±
ℓ ), gapmax(T±

ℓ ) ≤ 1.

(b) maxH±
ℓ −minH±

ℓ = q − 1 = maxT±
ℓ −minT±

ℓ .

Proof
Suppose Lℓ has code ⟨im · · · i0⟩. Write

H+
ℓ = {[im; 0] , [im; 1] , . . . , [im; im−1] , 0, [im; im+1] , [im; im+2] , . . . , [im;m]} .

For δ := [im; j] ∈ H+
ℓ with j < m, we have δ − δ(↓H

+
ℓ ) = [im; j] − [im; j + 1] =

[j + 1; j] ≤ 1 by the overlapping hypothesis. Also, maxH+
ℓ − minH+

ℓ = [im; 0] −
[im;m] = [m; 0] = q − 1. The sets H−

ℓ ,T
+
ℓ ,T

−
ℓ can be studied similarly.

Q.E.D.

Our approach is inspired by [1]. Let us illustrate it by proving a result for a
special case.

Proposition 2.5 (Special case “340512”)
Let m = 5 and A be a real negative algebraic conjugate of q. Suppose Φ satisfies the
FTC and P = P(A) has code ⟨340512⟩. Then |A| < 1.

Proof
It is proved by contradiction. Suppose on the contrary A ∈ [−q,−1). Let y := [3; 2].
The code ⟨340512⟩ implies σA(y) > 0 and σA(y) ≥ σA([s; t]) for all s, t. Note that
y ̸= 1, for otherwise 1 = σA([3; 2]) ≥ σA([0; 5]) = |A− 1| > 1. Hence y ∈ (0, 1) by
the overlapping hypothesis. Taking w := 1, Li = Li(A,w) and H−

i = H−
i (A,w), we

let k0 = k0(y) be the smallest non-negative integer such that

y ≤
k0∑
i=1

q − 1

qi
+

∞∑
i=k0+1

maxH−
i

qi
.

Let k∗
0 :=

{
1 if k0 = 0

k0 otherwise
. We now define for each i ≥ k∗

0 a set Ei ⊆ (D(q)−D(q)).

If k0 = 0, then we define Ei := H−
i for all i ≥ k∗

0. Else if k0 ≥ 1, then we define Ei

by

Ei :=


{[5; 0] , [5; 1] , [5; 2] , [4; 2] , [3; 2] , 0} =: S− if i = k∗

0 and k∗
0 is odd

{[5; 0] , [4; 0] , [3; 0] , [2; 0] , [1; 0] , 0} =: S+ if i = k∗
0 and k∗

0 is even
H−

i if i > k∗
0.
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Noting that q − 1 ∈ S±, we have

y −
k∗0−1∑
i=1

q − 1

qi
≤

∞∑
i=k∗0

maxEi

qi
.

As 0 ∈ H−
i and minS± ≤ 0, by y > 0 and the definition of k0 we also have

y −
k∗0−1∑
i=1

q − 1

qi
>


0 if k0 = 0(

k∗0−1∑
i=1

q − 1

qi
+

∞∑
i=k∗0

maxH−
i

qi

)
−

k∗0−1∑
i=1

q − 1

qi
if k0 ≥ 1

≥
∞∑

i=k∗0

minEi

qi
.

Moreover, we have

gapmax(Eℓ) ≤ 1 = qℓ
∞∑

i=ℓ+1

maxEi −minEi

qi

for all ℓ ≥ k∗
0, by using the definition of S± and the structure of H−

i (Lemma 2.4).
Thus, our lazy algorithm (Proposition 2.3), applied to x := y −

∑k0−1
1

q−1
qi

, gives

y −
k0−1∑
1

q − 1

qi
=

∞∑
i=k∗0

ti
qi

with ti ∈ Ei for all i ≥ k∗
0. Noting that y ∈ Y and |A| > 1, we have

(2.2) σA(y) =

k0−1∑
1

A− 1

Ai
+

∞∑
i=k∗0

σA(ti)

Ai

as a consequence of the FTC (Proposition 2.2).
We now show that this is a contradiction. Recall that σA(y) ≥ σA([0; 5]) > 0

and −H−
i ⊆ Li. If k0 = 0, then by (2.2), 0 < σA(y) =

∑∞
i=1 σA(ti)/A

i ≤ 0, giving a
contradiction. Else if k0 ≥ 1, (2.2) gives

(2.3) σA(y) ≤
k0−1∑
i=1

(A− 1)

Ai
+

σA(tk0)

Ak0
= 1− 1

Ak0−1
+

σA(tk0)

Ak0
.

Suppose k0 is odd first, so that Ek0 = S−. By the definition of S− and the code
of P, for any δ ∈ Ek0 , σA(δ) < 0 only if δ = [5; 0]. Consequently, it follows from
σA(y) ≥ σA([0; 5]) and (2.3) that

1− A = σA([0; 5]) ≤ σA(y) ≤ 1− 1

Ak0−1
+

σA([5; 0])

Ak0
= 1− 1

Ak0
≤ 2,

whence −1 ≤ A, which is a contradiction. Therefore, k0 is not odd but even, so that
Ek0 = S+. By the code of P, we see that maxEk0 = [3; 0]. Since σA(y) ≥ σA([3; 5]),
(2.3) gives

σA(∂3)− (A− 1) = σA([3; 5]) ≤ σA(y) ≤ 1− 1

Ak0−1
+

σA(∂3)

Ak0
.
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Noting that σA(∂3) ≥ 0 by the code representation of P, the above gives

0 ≤ σA(∂3)

(
1− 1

Ak0

)
≤ A− 1

Ak0−1
< −1 + 1 = 0.

This is a contradiction and completes the proof.
Q.E.D.

In the same spirit, we prove the following result.

Proposition 2.6 (Sufficient conditions for |A| ≤ 1)
Let A be an algebraic conjugate of q. Suppose Φ satisfies the FTC. Also, suppose
the following hold:

1. There exists y ∈ Y ∩ (0, 1) and w ∈ C \ {0} such that ℜ (σA(y)w) < 0.

2. For each ℓ ≥ 1, we have ℜ
(∑ℓ−1

i=1
(A−1)w

Ai

)
≥ 0.

3. For each ℓ ≥ 1, there exists Sℓ ⊆ (D(q)−D(q)) such that

(a) q − 1 ∈ Sℓ and minSℓ ≤ 0;
(b) gapmax(Sℓ) ≤ 1;
(c) for all δ ∈ Sℓ, at least one of the following holds:

i. ℜ
(

σA(δ)w
Aℓ

)
≥ 0. iii. |ℜ (σA(y)w)| >

∣∣∣ℜ(σA(δ)w
Aℓ

)∣∣∣ .
ii. ℜ

(
σA(δ)w

Aℓ

)
≥ ℜ

(
(A−1)w

Aℓ

)
. iv. ℜ

(∑ℓ−1
i=1

(A−1)w
Ai + σA(δ)w

Aℓ

)
> ℜ (σA(y)w) .

Then |A| ≤ 1.

Proof
It is proved by contradiction. Suppose on the contrary |A| > 1. Take Li = Li(A,w)
and H+

i = H+
i (A,w). As y ∈ (0, 1), let k0 be the smallest non-negative integer such

that

y ≤
k0∑
i=1

q − 1

qi
+

∞∑
i=k0+1

maxH+
i

qi
.

Let k∗
0 :=

{
1 if k0 = 0

k0 otherwise
. For each i ≥ k∗

0, we define a set Ei ⊆ (D(q)−D(q)). If

k0 = 0, then we define Ei := H+
i for all i ≥ k∗

0. Else if k0 ≥ 1, we take

Ei :=

{
Si if i = k∗

0

H+
i if i > k∗

0.

Since q − 1 ∈ Sk∗0
, 0 ∈ H+

i and minSk∗0
≤ 0, by the definition of k0 we have

∞∑
i=k∗0

minEi

qi
< y −

k∗0−1∑
i=1

q − 1

qi
≤

∞∑
i=k∗0

maxEi

qi
.
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Also, by hypothesis 3(b) and the structure of H+
i (Lemma 2.4), condition (2.1) of

our lazy algorithm (Proposition 2.3) is satisfied. Therefore, applying that result to
x := y −

∑k0−1
1

q−1
qi

, we get

y −
k0−1∑
1

q − 1

qi
=

∞∑
i=k∗0

ti
qi

with ti ∈ Ei for all i ≥ k∗
0. As y ∈ Y , it follows from the FTC and Proposition 2.2

that

(2.4) σA(y) =

k0−1∑
1

A− 1

Ai
+

∞∑
i=k∗0

σA(ti)

Ai
.

We now show that this is a contradiction. By hypothesis 1, we have ℜ (σA(y)w) <
0. Since H+

i ⊆ Li, so if k0 = 0, then by (2.4), we have 0 > ℜ (σA(y)w) =∑∞
i=1ℜ (σA(ti)w/Ai) ≥ 0, giving a contradiction. Else if k0 ≥ 1, (2.4) gives

0 > ℜ (σA(y)w) ≥ ℜ

(
k0−1∑
i=1

(A− 1)w

Ai

)
+ ℜ

(
σA(tk0)w

Ak0

)
.

Since tk0 ∈ Sk0 , the last expression is

≥


ℜ
(∑k0−1

i=1
(A−1)w

Ai

)
if tk0 satisfies hypothesis 3(c)(i)

ℜ
(∑k0

i=1
(A−1)w

Ai

)
if tk0 satisfies hypothesis 3(c)(ii)

ℜ
(∑k0−1

i=1
(A−1)w

Ai

)
+ℜ

(
σA(tk0 )w

Ak0

)
if tk0 satisfies hypothesis 3(c)(iii) or (iv).

The first and the second are ≥ 0 by hypothesis 2, which contradict ℜ (σA(y)w) < 0.
The third plainly contradicts hypothesis 3(c)(iv). Also, by hypothesis 2, it implies

0 > ℜ (σA(y)w) ≥ −
∣∣∣∣ℜ(σA(tk0)w

Ak0

)∣∣∣∣ ,
which contradicts hypothesis 3(c)(iii).

Q.E.D.

The rest of the section is devoted to finding suitable y ∈ Y ∩ (0, 1) satisfying
condition 1 of the preceding proposition. The idea was suggested by Feng (personal
communication, 2020).

Lemma 2.7 (Uniform upper bound of normalized gaps)
Fix θ0 ∈ (0, 1]. Let Fn :=

{∑n
1

di
qi
: di ∈ D(q)

}
. If gapmax(D(q)) ≤ θ0, then

gapmax(q
nFn) ≤ θ0 for all n ≥ 1. In particular, by the overlapping hypothesis,

we have gapmax(q
nFn) ≤ 1 for all n ≥ 1.

Proof
It is proved by induction on n. When n = 1, the statement is true since qF1 = D(q).
Suppose the statement is true for all n ≤ k. Let f ∈ F×min

k+1 . We want to show that
qk+1(f − f (↓Fk+1)) ≤ θ0.
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Writing f :=
∑k+1

i=1 di/q
i, there exists an index j0, 1 ≤ j0 ≤ k + 1, such that

dj0 ̸= 0 and di = 0 for all j0 < i ≤ k + 1. With d↓j0 = d
(↓D(q))
j0

, we have

f −

[
j0−1∑
i=1

di
qi

+
d↓j0
qj0

+
k+1∑
j0+1

q − 1

qi

]
=

dj0 − d↓j0
qj0

−
(

1

qj0
− 1

qk+1

)
≤ θ0

qj0
−
(

1

qj0
− 1

qk+1

)
≤ θ0

qk+1
.

Thus, if the L.H.S. is > 0, then

qk+1(f − f ↓) ≤ qk+1

(
f −

[
j0−1∑
1

di
qi

+
d↓j0
qj0

+
k+1∑
j0+1

q − 1

qi

])
≤ θ0,

which was to be shown. Else, we have
j0−1∑
i=1

di
qi

+
d↓j0
qj0

< f ≤
j0−1∑
i=1

di
qi

+
d↓j0
qj0

+
k+1∑
j0+1

q − 1

qi

and j0 ̸= k + 1. This implies

minFk+1−j0 = 0 < qj0

(
f −

j0−1∑
i=1

di
qi

−
d↓j0
qj0

)
≤ qj0

k+1∑
j0+1

q − 1

qi
= maxFk+1−j0 ,

so there exists g ∈ F×min
k+1−j0

such that, with g↓ = g(↓Fk+1−j0
),

g↓ < qj0

(
f −

j0−1∑
i=1

di
qi

−
d↓j0
qj0

)
≤ g.

As
[
j0−1∑
i=1

di
qi

+
d↓j0
qj0

+
g↓

qj0

]
∈ Fk+1, it follows that

qk+1(f − f ↓) ≤ qk+1

(
f −

[
j0−1∑
i=1

di
qi

+
d↓j0
qj0

+
g↓

qj0

])
≤ qk+1

(
g

qj0
− g↓

qj0

)
,

which is ≤ θ0 by the induction hypothesis. This completes the proof.
Q.E.D.

Proposition 2.8 (Availability of y)
Let A be an algebraic conjugate of q. Suppose Φ satisfies the FTC.

(a) Given any nonzero ξ ∈ C\{0}, there exists y ∈ Ycore such that ℜ (σA(y)ξ) ≤ 0.

(b) If A is real, then there exists y ∈ Y ∩ (0, 1) such that σA(y) < 0.

(c) If ℜ (A) < 1, then there exists y ∈ Y ∩ (0, 1) such that ℜ (σA(y)) < 0.

(d) There exists y ∈ Y ∩ (0, 1) such that given any small ε > 0, there exists
ϖε ∈ C \ {0} with |ϖε| = 1 satisfying the following. (i) |ϖε − 1| < ε; (ii)
ℜ (σA(y)ϖε) < 0; and (iii) ℜ (σA(y)ϖε) < ℜ (ζϖε) for all ζ in the closed disc
D1(1).
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Proof

(a) It is proved by contradiction. Suppose on the contrary ℜ (σA(y)ξ) > 0 for
all y ∈ Ycore. For the Fn defined in the preceding Lemma 2.7, we have
qn
[
f − f (↓Fn)

]
∈ Ycore for all n ≥ 1 and all f ∈ F×min

n . Since Φ satisfies
the FTC, Ycore and hence ξ · σA (Ycore) are both finite sets. Therefore, we have
qn
[
f − f ↓] ≍ 1 and ℜ

(
ξ · σA

(
qn
[
f − f ↓])) ≍ 1 by our initial assumption.

Now

1− 1

qn
=

n∑
1

q − 1

qi
=

∑
f∈F×min

n

[
f − f ↓] ≍ q−n ((#Fn)− 1) .

Consequently,

ℜ ((An − 1) ξ) = ℜ

ξAn · σA

 ∑
f∈F×min

n

[
f − f ↓]

=
∑

f∈F×min
n

ℜ
(
ξ · σA

(
qn
[
f − f ↓]))≫ ∑

f∈F×min
n

1 ≫ qn,

whence

ℜ
(
An − 1

An

An

qn
ξ

)
≫ 1.

If |A| < q, then by letting n → ∞ we see a contradiction. Else if |A| = q,

then ℜ
(
An

qn
ξ

)
≤ 0 for infinitely many n. Since An − 1

An
→ 1 as n → ∞, and∣∣∣∣An

qn
ξ

∣∣∣∣ ≡ |ξ|, so given any ε > 0, we have ℜ
(
An − 1

An

An

qn
ξ

)
< ε for infinitely

many n. This demonstrates a contradiction.

(b) Taking ξ = 1 in part (a), there exists y ∈ Y ∩ (0, 1] such that σA(y) =
ℜ (σA(y)ξ) ≤ 0. Since σA(1) = 1 and σA(x) = 0 ⇔ x = 0, we have y ̸= 1 and
σA(y) < 0.

(c) As 0 > ℜ (A− 1) = ℜ (σA(
∑m

i=1 [i; i− 1])) =
∑m

i=1ℜ (σA([i; i− 1])), there ex-
ists i0 such that ℜ (σA([i0; i0 − 1])) < 0. Therefore we can take y := [i0; i0 − 1].

(d) Taking ξ = 1 in part (a), there exists y ∈ Y ∩ (0, 1) such that ℜ (σA(y)) ≤ 0.
If ℜ (σA(y)) < 0, then we can simply take ϖε := 1 and the result follows.
Suppose ℜ (σA(y)) = 0. Since y ̸= 0, so is σA(y). Without loss of generality
we assume ℑ (σA(y)) > 0 so that σA(y) = i |σA(y)|. The following figure may
explain the subsequent argument clearer than words:
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We define a number θ0 as follows. If |σA(y)| < 2, then define θ0 to be the
number in (0, π/2] such that σA(y)e

−iθ0 is on the circle |z − 1| = 1. Else
if |σA(y)| ≥ 2, then define θ0 to be π/2. Consider ϖε := eiθ, where θ ∈
(0, θ0) is a small number such that

∣∣eiθ − 1
∣∣ < ε. We have ℜ (σA(y)ϖε) =

− |σA(y)| sin θ < 0.
Let ζ := reiα ∈ D1(1), where −π/2 ≤ α ≤ π/2. Note that if α = ±π/2, then
ζ = 0, forcing r = 0. We want to show that ℜ (ζϖε) > ℜ (σA(y)ϖε). Observe
that in the preceding figure, the dashed arrow splits D1(1) into two regions.
They correspond to two cases:

(i) α + θ ∈ [−π/2, π/2]. (ii) α + θ > π/2.

In the former case, we have ℜ (ζϖε) = r cos(α+ θ) ≥ 0 > ℜ (σA(y)ϖε). In the
latter case, as the figure depicts, we have r ≤ |σA(y)|. Therefore,

ℜ (ζϖε) = r cosα cos θ − r sinα sin θ ≥

{
0 if α = ±π/2

− |r sinα| sin θ otherwise
> − |σA(y)| sin θ = ℜ (σA(y)ϖε) .

This completes the proof.
Q.E.D.

This is the end of our preparation.
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Chapter 3

Real cases

In this chapter, we prove our results for the real cases. As revealed by the special
case ⟨340512⟩ (p.13 Proposition 2.5), forbidden patterns and their avoidance will be
the central theme. Another focus is to illustrate what we can learn from the results.
It turns out that we are able to give an example of Φ satisfying the FTC while the
associated q is not a PV number.

3.1 Proof of the real cases
We first establish the theorem of forbidden patterns, which plays a principal role for
the real cases.

Proof of the forbidden patterns (p.4 Theorem 1.5)
It is proved by contradiction using p.15 Proposition 2.6. Suppose on the contrary
A ∈ [−q,−1) ∪ (1, q). We take w := 1. Since

∑ℓ−1
i=1

(A−1)
Ai = 1 − 1

Aℓ−1 ≥ 0, Propo-
sition 2.6(2) is satisfied. To get a contradiction, we would like to find a positive
number y and two sets S+,S− ⊆ (D(q)−D(q)) satisfying the following conditions:

C1. y ∈ Y ∩ (0, 1) and σA(y) < 0.

C2. (a) q − 1 ∈ S± and minS± ≤ 0.
(b) gapmax(S±) ≤ 1.

C3. For all δ ∈ S+, at least one of the following holds:

(a) σA(δ) ≥ 0. (c) |σA(y)| >
∣∣∣σA(δ)

A

∣∣∣ .
(b) σA(δ) ≥ σA(q − 1). (d) 1− 1

Aℓ−1 +
σA(δ)
Aℓ > σA(y) for all ℓ ≥ 1.

C4. For all δ ∈ S−, at least one of the following holds:

(a) σA(δ) ≤ 0. (c) |σA(y)| >
∣∣∣σA(δ)

A

∣∣∣ .
(b) σA(δ) ≤ σA(q − 1). (d) 1− 1

Aℓ−1 +
σA(δ)
Aℓ > σA(y) for all ℓ ≥ 1.

And we can assume A < 0 when checking C4.

21
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Before proceeding, note that by p.17 Proposition 2.8(b), there exists γ0 ∈ Y ∩ (0, 1)
such that σA(γ0) < 0. Also, by an appeal to symmetry (p.11 Observation 2.1), if
the result for Pa-I (resp. Pa-II, Pa-IV) is established, then so is that for Pa-I′ (resp.
Pa-II′, Pa-IV′).

Pa-I:

• If P has code ⟨· · · 0⟩, then we take y := γ0, S+ := {[∗; 0]} and S− := {[m; ∗]}, i.e.

S+ = {[m; 0] , [m− 1; 0] , . . . , [0; 0]} ,
S− = {[m; 0] , [m; 1] , . . . , [m;m]} .

As q−1 = [m; 0] ∈ S± and 0 = [0; 0] = [m;m] ∈ S±, C2(a) is satisfied. C2(b) fol-
lows from the overlapping hypothesis. Since P has code ⟨· · · 0⟩, C3(a) is satisfied.
Finally, given δ := [m; j] ∈ S−,

P has code ⟨· · · j · · ·m · · · 0⟩ ⇒ σA(δ) ≤ 0,
while P has code ⟨· · ·m · · · j · · · 0⟩ ⇒ σA([m; 0]) ≥ σA([m; j]) = σA(δ).

Consequently, C4(a) or (b) is satisfied.

• If P has code ⟨· · · 1⟩, then we take y := [1; 0], S+ := {q − 1} ∪ {[∗; 1]} =
{[m; 0] , [∗; 1]}, and S− := {[m; ∗]}. Since P has code ⟨· · · 0 · · · 1⟩, we have
σA(∂0) > σA(∂1), whence σA(y) < 0 and so y ̸= 1. Therefore, by the over-
lapping hypothesis, y ∈ Y ∩ (0, 1), and C1 is satisfied. So is C2, because for S+

we have 0 < [m; 0]− [m; 1] = [1; 0] ≤ 1.
Note that given δ ∈ S+, either δ = q−1 so that C3(b) is satisfied, or δ ∈ {[∗; 1]} ⊆
P so that C3(a) is satisfied. Finally, to check C4, recall that we can assume A < 0.
As a result, P has code ⟨· · · 0 · · ·m · · · 1⟩, whence given δ := [m; j] ∈ S−,

P has code ⟨· · · j · · ·m · · · 1⟩ ⇒ σA(δ) ≤ 0,
while P has code ⟨· · · 0 · · ·m · · · j · · · 1⟩ ⇒ |σA(δ)| ≤ |σA(y)| < |A| · |σA(y)|.

Thus C4(a) or (c) is satisfied.

• If P has code ⟨· · ·m⟩, then we take y := γ0, S+ := {[∗; 0]}, and S− := {[m; ∗]}.
Plainly C2 is satisfied. Given [j; 0] ∈ S+,

P has code ⟨· · · j · · · 0 · · ·m⟩ ⇒ σA([j; 0]) ≥ 0,
while P has code ⟨· · · 0 · · · j · · ·m⟩ ⇒ 0 ≥ σA([j; 0]) ≥ σA([m; 0]).

Hence C3(a) or (b) is satisfied. Since S− ⊆ −P, C4(a) is satisfied.

This completes the proof for Pa-I.

Pa-II: Suppose P has code ⟨ℓ0 · · ·m · · · (ℓ0 + 1) · · ·⟩ for some 0 ≤ ℓ0 ≤ m− 2. Take
y := [ℓ0 + 1; ℓ0], which fulfills C1. We use S+ := {[m; ∗]} and S− = {[∗; 0]}. Given
δ := [m; j] ∈ S+,

P has code ⟨· · ·m · · · j · · ·⟩ ⇒ σA(δ) ≥ 0,
while P has code ⟨ℓ0 · · · j · · ·m · · · (ℓ0 + 1) · · ·⟩ ⇒ |σA(δ)| ≤ |σA(y)|.
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Hence C3(a) or (c) is satisfied. Finally, to check C4, recall that we can assume
A < 0, whence P has code ⟨ℓ0 · · · 0 · · ·m · · · (ℓ0 + 1) · · ·⟩. Given δ := [j; 0] ∈ S−,

P has code ⟨· · · 0 · · · j · · ·⟩ ⇒ σA(δ) ≤ 0,
while P has code ⟨ℓ0 · · · j · · · 0 · · ·m · · · (ℓ0 + 1) · · ·⟩ ⇒ |σA(δ)| ≤ |σA(y)|.

We see that C4(a) or (c) is satisfied.

Pa-III: Take y := γ0,

S+ := {[m; 0] , [m; 1] , . . . , [m; ℓ0]} ∪ {[m− 1; ℓ0] , [m− 2; ℓ0] , . . . , [ℓ0; ℓ0]} ,

and S− := {[m; ∗]}. Pa-III implies that C3(a) is satisfied. Since P has code
⟨· · ·m · · · 0 · · ·⟩, which is impossible when A < 0, C4 is automatically satisfied.

Pa-IV: Suppose P has code ⟨ℓ0 0 · · · (ℓ0 + 1) · · ·m · · ·⟩ for some 0 ≤ ℓ0 ≤ m − 2.
Take y := [ℓ0 + 1; ℓ0], S+ := {[m; ∗]}, and S− := {[∗; 0]}. We check C3. Given
δ := [m; j] ∈ S+, if j ̸= ℓ0, then

P has code ⟨· · ·m · · · j · · ·⟩ ⇒ σA(δ) ≥ 0,
while P has code ⟨ℓ0 0 · · · j · · ·m · · ·⟩ ⇒ 0 ≥ σA(δ) ≥ σA([m; 0]) = σA(q − 1).

Hence C3(a) or (b) is satisfied. Else if j = ℓ0, then for all ℓ ≥ 1, we have(
1− 1

Aℓ−1
+

σA(δ)

Aℓ

)
− σA(y) =

(
1− 1

Aℓ−1
+

σA([m; ℓ0])

Aℓ

)
− σA(∂ℓ0+1) + σA(∂ℓ0)

= (1 + σA(∂ℓ0))

(
1− 1

Aℓ

)
− σA(∂ℓ0+1)

≥ −σA(∂ℓ0+1) > 0.

Therefore C3(d) is satisfied. Finally, we check C4. Given δ := [j; 0] ∈ S−, if j = ℓ0
then |σA(δ)| < |A| · |σA(y)|, else if j ̸= ℓ0 then σA(δ) ≤ 0. Thus C4(c) or (a) is
satisfied.

Q.E.D.

We settle the real cases now.

Proof of the real cases (p.3 Theorem 1.3)
When m = 1 or 2, the last digit in the code of P = P(A) can only be 0, 1, or m.
Hence Pa-I in Theorem 1.5 (p.4) is matched and |A| < 1. When m = 3, all of the
24 possible codes of P are:

⟨0123⟩(I) ⟨0132⟩(I
′) ⟨0213⟩(I) ⟨0231⟩(I) ⟨0312⟩(I

′) ⟨0321⟩(I)

⟨1023⟩(I) ⟨1032⟩(II) ⟨1203⟩(I) ⟨1230⟩(I) ⟨1302⟩(II) ⟨1320⟩(I)

⟨2013⟩(I) ⟨2031⟩(I) ⟨2103⟩(I) ⟨2130⟩(I) ⟨2301⟩(I) ⟨2310⟩(I)

⟨3012⟩(I
′) ⟨3021⟩(I) ⟨3102⟩(I

′) ⟨3120⟩(I) ⟨3201⟩(I) ⟨3210⟩(I)

The superscripts indicate which pattern the code matches. Therefore |A| < 1 again.
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Suppose m = 4 and P has code ⟨i4i3i2i1i0⟩. If on the contrary |A| > 1, then
⟨i4i3i2i1i0⟩ has to avoid all patterns in Theorem 1.5. Pa-I and Pa-I′ force i4 ∈ {1, 2}
and i0 ∈ {2, 3}:

i4 i3 i2 i1 i0
×4, 3, 0 ×0, 1, 4
1, 2 2, 3

As we cannot have (i4, i0) = (2, 2), and the cases (i4, i0) = (2, 3) or (1, 2) are Pa-II,
it remains to consider the case (i4, i0) = (1, 3). We want to avoid Pa-II and Pa-II′,
and there are two cases: A > 1 or A < −1. In the former case, we need

⟨i4i3i2i1i0⟩ =


⟨· · · 4 · · · 0 · · ·⟩
⟨1 · · · 2 · · · 4 · · ·⟩
⟨· · · 0 · · · 2 · · · 3⟩ ,

which results in no valid code. In the latter case, we need

⟨i4i3i2i1i0⟩ =


⟨· · · 0 · · · 4 · · ·⟩
⟨1 · · · 2 · · · 4 · · ·⟩
⟨· · · 0 · · · 2 · · · 3⟩ .

The only possibility is ⟨10243⟩, which matches Pa-IV however. This completes the
proof.

Q.E.D.

Proof of “125034” (p.4 Theorem 1.6)
Suppose A ∈ (1, q) and P has code ⟨i5 i4 i3 i2 i1 i0⟩. This code has to avoid all patterns
in Theorem 1.5 (p.4). Pa-I and Pa-I′ force i5 ∈ {1, 2, 3} and i0 ∈ {2, 3, 4}:

i5 i4 i3 i2 i1 i0
×5, 4, 0 ×0, 1, 5
1, 2, 3 2, 3, 4

Consider i5 = 3. As we cannot have (i5, i0) = (3, 3), and the cases (i5, i0) = (3, 4) is
Pa-II, it follows that (i5, i0) = (3, 2). By A > 1, Pa-II and Pa-II′, we have

⟨i5 i4 i3 i2 i1 i0⟩ =


⟨· · · 5 · · · 0 · · ·⟩
⟨3 · · · 4 · · · 5 · · ·⟩
⟨· · · 0 · · · 1 · · · 2⟩ ,

implying ⟨i5 i4 i3 i2 i1 i0⟩ = ⟨345012⟩. But this matches Pa-III (with ℓ0 = 2).
Next we consider i5 = 2. Pa-II forces i0 = 4. By A > 1, Pa-II and Pa-II′, we

require

⟨i5 i4 i3 i2 i1 i0⟩ =


⟨· · · 5 · · · 0 · · ·⟩
⟨2 · · · 3 · · · 5 · · ·⟩
⟨· · · 0 · · · 3 · · · 4⟩ ,

which does not give any valid code representation.
Finally, consider i5 = 1. Pa-II forces i0 = 3, 4. We have already handled the

case (i5, i0) = (2, 4), so by an appeal to symmetry (p.11 Observation 2.1), the case
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(i5, i0) = (1, 3) can be ignored, and so i0 = 4. By A > 1, Pa-II and Pa-II′, we have

⟨i5 i4 i3 i2 i1 i0⟩ =


⟨· · · 5 · · · 0 · · ·⟩
⟨1 · · · 2 · · · 5 · · ·⟩
⟨· · · 0 · · · 3 · · · 4⟩ ,

whence ⟨i5 i4 i3 i2 i1 i0⟩ = ⟨125034⟩. This completes the proof.
Q.E.D.

Proof of “120534” (p.4 Theorem 1.7)
Suppose A ∈ [−q,−1) and P has code ⟨i5 i4 i3 i2 i1 i0⟩. This code has to avoid all
patterns in Theorem 1.5 (p.4). Pa-I and Pa-I′ force i5 ∈ {1, 2, 3} and i0 ∈ {2, 3, 4}:

i5 i4 i3 i2 i1 i0
×5, 4, 0 ×0, 1, 5
1, 2, 3 2, 3, 4

Consider i5 = 3. Pa-II forces (i5, i0) = (3, 2). By A < −1, Pa-II and Pa-II′, we
require

⟨i5 i4 i3 i2 i1 i0⟩ =


⟨· · · 0 · · · 5 · · ·⟩
⟨3 · · · 4 · · · 5 · · ·⟩
⟨· · · 0 · · · 1 · · · 2⟩ .

If the second digit i4 is 0, then the middle constraint implies the code matches Pa-
IV. Similarly, if the second last digit i1 is 5, then the code would match Pa-IV′. As
a result, ⟨i5 i4 i3 i2 i1 i0⟩ = ⟨340512⟩. But this contradicts p.13 Proposition 2.5.

Next, we consider i5 = 2. Pa-II forces i0 = 4. By A < −1, Pa-II and Pa-II′, we
have

⟨i5i4i3i2i1i0⟩ =


⟨· · · 0 · · · 5 · · ·⟩
⟨2 · · · 3 · · · 5 · · ·⟩
⟨· · · 0 · · · 3 · · · 4⟩ .

Again the second digit i4 cannot be 0, and the second last digit i1 cannot be 5.
These force i4 = 1 = i1, which is a contradiction.

Finally, consider i5 = 1. Pa-II forces i0 = 3, 4. The case (i5, i0) = (1, 3) can be
ignored by Observation 2.1 (p.11), so i0 = 4. By A < −1, Pa-II and Pa-II′, we have

⟨i5 i4 i3 i2 i1 i0⟩ =


⟨· · · 0 · · · 5 · · ·⟩
⟨1 · · · 2 · · · 5 · · ·⟩
⟨· · · 0 · · · 3 · · · 4⟩ .

Again the second digit i4 cannot be 0, and the second last digit i1 cannot be 5,
whence ⟨i5 i4 i3 i2 i1 i0⟩ = ⟨120534⟩. This completes the proof.

Q.E.D.

3.2 Interlude: the secret of <125034>
The result of ⟨125034⟩ (p.4 Theorem 1.6) is mysterious because it eliminates all but
one pattern. How does an example corresponding to this chosen pattern, if any,
really look like? In this section, we shall try to unmask the secret of ⟨125034⟩.
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Proposition 3.1 (<125034>: Necessity of large gap)
Let A be a real positive algebraic conjugate of q. Suppose Φ satisfies the FTC and
P = P(A) has code ⟨· · · (ℓ0 + 1) · · ·m · · · 0 · · · ℓ0 · · · (m− 1)⟩, where 0 ≤ ℓ0 ≤ m− 1.
If

[ℓ0 + 1; ℓ0] ≤
q − 1

q
+

∞∑
i=2

[m− 1; 0]

qi
,

then A < 1. In particular, if [m;m− 1] ≤ q(q − 1)

q(q − 1) + 1
, then A < 1.

Proof
The proof is similar to that of p.15 Proposition 2.6. Suppose on the contrary A ∈
(1, q). Let y := [ℓ0 + 1; ℓ0] and T−

i := T−
i (A, 1). By our hypothesis on [ℓ0 + 1; ℓ0],

we have y ∈ (0, 1), so we can let k0 = k0(y) be the smallest non-negative integer
such that

y ≤
k0∑
i=1

q − 1

qi
+

∞∑
i=k0+1

maxT−
i

qi
=

k0∑
i=1

q − 1

qi
+

∞∑
i=k0+1

[m− 1; 0]

qi
.

Note that by our hypothesis on [ℓ0 + 1; ℓ0], k0 can only be 0 or 1. To be parallel
with the proof of Proposition 2.6, we still define

k∗
0 =

{
1 if k0 = 0

k0 otherwise

(although it is always equal to 1 now).
We now define for each i ≥ k∗

0 a set Ei ⊆ (D(q)−D(q)). If k0 = 0, then we define
Ei := T−

i for all i ≥ k∗
0. Else if k0 = 1, then we define Ei by

Ei :=

{
T−

i ∪ {q − 1} if i = k∗
0

T−
i if i > k∗

0.

With these Ei, we have

∞∑
i=k∗0

minEi

qi
≤ 0 < y = y −

k∗0−1∑
i=1

q − 1

qi
≤

∞∑
i=k∗0

maxEi

qi
.

Observe that for any j ≥ k∗
0, we have

gapmax(Ej) ≤ 1 = qj
∞∑

i=j+1

maxEi −minEi

qi
,

because [m; 0]− [m− 1; 0] = [m;m− 1] ≤ 1. Therefore, applying our lazy algorithm
(p.12 Proposition 2.3) to x := y, we obtain

y =
∞∑

i=k∗0

ti
qi
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with ti ∈ Ei for all i ≥ k∗
0. As a consequence of the FTC (p.11 Proposition 2.2), we

have

(3.1) σA(y) =
∞∑

i=k∗0

σA(ti)

Ai
.

We now show that this is a contradiction. Using the code representation of P,
we have σA(y) = σA([ℓ0 + 1; ℓ0]) ≥ σA([m; 0]) = A − 1 > 0. On the other hand, as
−T−

i ⊆ Li(A, 1), so if k0 = 0, then by (3.1)

0 < σA(y) =
∞∑
i=1

σA(ti)

Ai
≤ 0,

giving a contradiction. Else if k0 = 1, (3.1) gives

0 < A− 1 ≤ σA(y) =
σA(t1)

A
+

∞∑
i=2

σA(ti)

Ai
≤ σA(t1)

A
.

If t1 ∈ T−
1 , then the R.H.S. is ≤ 0, which gives a contradiction. As a result, we have

t1 = q − 1, and the above gives

0 < A− 1 ≤ σA(q − 1)

A
=

A− 1

A
,

which is also a contradiction.
Finally, we check what the hypothesis on [ℓ0 + 1; ℓ0] means when ℓ0 = m − 1.

Now

[m;m− 1] ≤ q − 1

q
+

∞∑
i=2

[m− 1; 0]

qi
= 1− 1

q
+

[m− 1; 0]

q(q − 1)
= 1− [m;m− 1]

q(q − 1)
,

whence
[m;m− 1] ≤ q(q − 1)

q(q − 1) + 1
.

Q.E.D.

The preceding proposition, applied to ⟨125034⟩, suggests that we need the gap
[5; 4] to be large. By symmetry, we may need [1; 0] to be large too. A natural
response is to consider the case [5; 4] = [1; 0] = 1. It turns out to be productive.

Proposition 3.2 (<125034>: Towards the first example)
Let m = 5 and A be a real positive algebraic conjugate of q. Suppose Φ satisfies
the FTC, [1; 0] = [5; 4] = 1, A > 1, and P = P(A) has code ⟨125034⟩. Then
A2 − 6A+ 6 ≥ 0. In case A2 − 6A+ 6 = 0, we have A = 3−

√
3, q = 3 +

√
3, and

∂1 ∂2 ∂5 ∂0 ∂3 ∂4
1 q/3 q − 1 0 2q/3− 1 q − 2
1 1.577 3.732 0 2.154 2.732

.
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Proof
Firstly, we claim that for all y ∈ {[2; 1] , [3; 2] , [4; 3]}, we have

|σA(y)| ≤
|σA([5; 1])|

A
.

To verify the claim, suppose on the contrary the above does not hold for some
y ∈ {[2; 1] , [3; 2] , [4; 3]}. Let w := 1 and Sℓ := {[5; ∗]} for all ℓ ≥ 1. We apply p.15
Proposition 2.6 using these y, w, and Sℓ. For condition 3(c) of that proposition,
note that if 3(c)i does not hold, then δ = [5; 1] or [5; 2], and our assumption on y
implies that 3(c)iii holds. Accordingly, we have |A| ≤ 1, which is a contradiction.

Therefore, by the hypothesis [1; 0] = [5; 4] = 1, we are considering the IFS

σA(∂1) σA(∂2) σA(∂5) σA(∂0) σA(∂3) σA(∂4)
1 a A− 1 0 b A− 2

for some a, b ∈ R satisfying

(3.2)


1− a ≤ (2− A)/A
a− b ≤ (2− A)/A
b− (A− 2) ≤ (2− A)/A.

Adding the inequalities, we get

3− A ≤ 6− 3A

A
⇒ 0 ≤ A2 − 6A+ 6.

When A2 − 6A+ 6 = 0, by |A| ≤ q we have A = 3−
√
3 and q = 3 +

√
3. Also,

equality holds in (3.2). As A(A− 6)

−6
= 1, we have 1

A
=

6− A

6
. It follows from the

first and third equation of (3.2) that
a = 2− 2

A
= 2− 2 · 6− A

6
=

A

3

b = A− 3 +
2

A
= A− 3 + 2 · 6− A

6
=

2A

3
− 1.

Q.E.D.

As 3 −
√
3 ≈ 1.2679492, we see that q := 3 +

√
3 ≈ 4.7320508 is not a PV

number. The IFS discovered in the preceding proposition,

Φ := {ρx+ ∂iρ}5i=0 ,

where

{∂i}5i=0 :=

{
0, 1,

q

3
,

(
2q

3
− 1

)
, (q − 2), (q − 1)

}
=

{
0, 1,

(
1 +

1√
3

)
,

(
1 +

2√
3

)
, (1 +

√
3), (2 +

√
3)

}
=
{

0, 1, 1.5773503, 2.1547005, 2.7320508, 3.7320508
}
,(3.3)
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is also of the required form of Chapter 2 section 2.1. And finally, yes. This IFS
indeed satisfies the FTC. Bravo! Let’s . . . defer the verification until Chapter 5,
nevertheless, for we can give a more systematic treatment of the issue there. We
ask the reader’s pardon for the deferment.

We end by describing an implication of the FTC for this Φ. Now, as a con-
sequence of the FTC, Ycore is a finite set. We shall verify in Chapter 5 that
Ycore = {1, q/3− 1}. Using the notation in p.16 Lemma 2.7, we define

Xn := qnFn =

{
n−1∑
i=0

qidi : di ∈ D(q)

}
.

By that lemma, we have
{
x− x(↓Xn) : x ∈ X×min

n

}
⊆ Ycore. Let

N1(n) := #
{
x ∈ Xn : x− x(↓Xn) = 1

}
,

N2(n) := #
{
x ∈ Xn : x− x(↓Xn) = q/3− 1

}
.

It follows that #Xn = N1(n) +N2(n) + 1 and

N1(n) · 1 +N2(n) ·
(q
3
− 1
)
=

∑
x∈X×min

n

(x− x↓) = qn − 1.

The last equation gives1
q

3
− 1

1
A

3
− 1


N1(n)

N2(n)

 =

 qn − 1

An − 1

 .

Since 1
q

3
− 1

1
A

3
− 1


−1

=

1

√
3

3

1
−
√
3

3


−1

=


1

2

1

2√
3

2

−
√
3

2

 ,

we have

(3.4)



N1(n) =
qn + An

2
− 1

N2(n) =

√
3

2
(qn − An)

#Xn =

√
3 + 1

2
qn −

√
3− 1

2
An.

As q, A are the roots of x2−6x+6, recalling the theory of linear recurrence relation,
we also have

(3.5)


N1(n+ 2) + 1 = 6[N1(n+ 1) + 1]− 6[N1(n) + 1] = 6N1(n+ 1)− 6N1(n)

N2(n+ 2) = 6N2(n+ 1)− 6N2(n)

#Xn+2 = 6 (#Xn+1)− 6 (#Xn) .
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For instance, taking n = 1 in (3.4), we have N1(n) = 2, N2(n) = 3, and #Xn = 6.
This matches the data in (3.3). Taking n = 2 on the other hand, we have N1(n) = 11,
N2(n) = 18, and #Xn = 30. This matches the structure of X2, as the following
tables show (we use the shorthand ⟨i⟩ := ∂i in the meantime).

x ∈ X2 value x− x↓

⟨0⟩q + ⟨0⟩ 0 ∞
⟨0⟩q + ⟨1⟩ 1 1
⟨0⟩q + ⟨2⟩ 1.577 q/3− 1
⟨0⟩q + ⟨3⟩ 2.154 q/3− 1
⟨0⟩q + ⟨4⟩ 2.732 q/3− 1
⟨0⟩q + ⟨5⟩ 3.732 1

x ∈ X2 value x− x↓

⟨1⟩q + ⟨0⟩ 4.732 1
⟨1⟩q + ⟨1⟩ 5.732 1
⟨1⟩q + ⟨2⟩ 6.309 q/3− 1
⟨1⟩q + ⟨3⟩ 6.886 q/3− 1

⟨2⟩q + ⟨0⟩ = ⟨1⟩q + ⟨4⟩ 7.464 q/3− 1
⟨2⟩q + ⟨1⟩ = ⟨1⟩q + ⟨5⟩ 8.464 1

x ∈ X2 value x− x↓

⟨2⟩q + ⟨2⟩ 9.041 q/3− 1
⟨2⟩q + ⟨3⟩ 9.618 q/3− 1

⟨3⟩q + ⟨0⟩ = ⟨2⟩q + ⟨4⟩ 10.196 q/3− 1
⟨3⟩q + ⟨1⟩ = ⟨2⟩q + ⟨5⟩ 11.196 1

⟨3⟩q + ⟨2⟩ 11.773 q/3− 1
⟨3⟩q + ⟨3⟩ 12.350 q/3− 1

x ∈ X2 value x− x↓

⟨4⟩q + ⟨0⟩ = ⟨3⟩q + ⟨4⟩ 12.928 q/3− 1
⟨4⟩q + ⟨1⟩ = ⟨3⟩q + ⟨5⟩ 13.928 1

⟨4⟩q + ⟨2⟩ 14.505 q/3− 1
⟨4⟩q + ⟨3⟩ 15.082 q/3− 1
⟨4⟩q + ⟨4⟩ 15.660 q/3− 1
⟨4⟩q + ⟨5⟩ 16.660 1

x ∈ X2 value x− x↓

⟨5⟩q + ⟨0⟩ 17.660 1
⟨5⟩q + ⟨1⟩ 18.660 1
⟨5⟩q + ⟨2⟩ 19.237 q/3− 1
⟨5⟩q + ⟨3⟩ 19.814 q/3− 1
⟨5⟩q + ⟨4⟩ 20.392 q/3− 1
⟨5⟩q + ⟨5⟩ 21.392 1

Finally, using (3.5), we have N1(n) = 53, N2(n) = 90, and #Xn = 144 when n = 3.
These numbers can be demonstrated with the aid of computer.



Chapter 4

General cases

4.1 Conjugates on the unit circle
We start to deal with complex algebraic conjugates in this chapter. To begin with,
note that if |A| = 1, which may happen now, then we cannot apply p.11 Proposi-
tion 2.2(c). This section is devoted to establishing some tools for such case.

Our approach is inspired by [1, proof of proposition 3.2]. Unlike the original
argument, we simply consider algebraic conjugates of q rather than general complex
numbers on the unit circle.

We make an observation which was suggested by Feng (personal communication,
2021). Given an algebraic conjugate A of q with |A| = 1, it only happens that
(argA)/π /∈ Q, for otherwise there exists n ≥ 1 such that An = 1, which leads
to the contradiction qn = 1. Accordingly, we have the following lemma, which
corresponds to [1, Lemma 3.6].

Lemma 4.1 (Outcome of irrational rotation)
Let A be an algebraic conjugate of q and w0 ∈ C\{0} a nonzero complex number. If
|A| = 1, then given any z ∈ C \ {0}, we have ℜ (zw0/A

i) = 0 for at most one i ∈ N.

Proof
Since (argA)/π /∈ Q, we have{

ℜ (zw0/A
i) = 0

ℜ (zw0/A
j) = 0

⇒ arg
(
zw0/A

j
)
− arg

(
zw0/A

i
)
∈ Zπ ⇒ i = j.

Q.E.D.

The next result shows that, given a sequence {σn}∞n=1 of complex numbers with
positive and increasing real parts, if the set {|σn − σn−1| : n ≥ 2} of distances be-
tween consecutive terms is a finite set, then the sequence cannot lie on a finite
number of circles centred at the origin.

Proposition 4.2 (Dilemma of finiteness)
Let {σn}∞n=1 be a sequence of complex numbers. Let ∆n := σn − σn−1. Suppose the
following hold:

31
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(i) {|∆n|}∞n=2 is a finite set;

(ii) ∆n ̸= 0 infinitely often;

(iii) Either ∆n = 0 or ℜ (∆n) > 0;

(iv) ℜ (σ1) > 0.

Then {|σn|}∞n=1 cannot be a finite set.

Proof
It is proved by contradiction. Suppose on the contrary {|σn|}∞n=1 is a finite set.
A fortiori {ℜ(σn)}∞n=1 is bounded. As {ℜ(σn)}∞n=1 is an increasing sequence, it
converges and hence

(4.1) ℜ (∆i) = ℜ (σi)−ℜ (σi−1) → 0 as i → ∞.

Let C :=
{
R ∈ {|σn|}n≥1 : |σi| = R for infinitely many i

}
. Since {|σn|}n≥1 is a finite

set, we can define R0 := max C. There exists a subsequence
{
σrj

}∞
j=1

, r1 > 1, such
that

1.
∣∣σrj

∣∣ = R0 and ∆rj ̸= 0 for all j (by R0 ∈ C and ∆i ̸= 0 infinitely often)

2. There is a d0 > 0 such that
∣∣∆rj

∣∣ = d0 for all j (by the finiteness of {|∆n|}n≥2)

3. ℑ
(
σrj

)
are all of the same ± sign:

{
ℑ
(
σrj

)}∞
j=1

⊆ (0,∞) or ⊆ (−∞, 0)

(suppose
{
σrj

}
is a subsequence satisfying requirement 1-2. If ℑ

(
σrj

)
= 0 for

some j, then by ℜ (σ1) > 0 and ℜ (∆i) ≥ 0 for all i, we see that writing σrj =
σ1+rj = σ2+rj = · · · = σℓ+rj ̸= σℓ+1+rj , we have

∣∣σrj

∣∣ < ∣∣σℓ+1+rj

∣∣. Hence by the
definition of R0, we can take a subsequence of

{
σrj

}
so that this “same ± sign”

property is satisfied.)
Define u := 1 if

{
ℑ
(
σrj

)}∞
j=1

⊆ (0,∞), and u := −1 otherwise.

4. There exists R1 ∈ C such that
∣∣σ−1+rj

∣∣ = R1 for all j (by finiteness of {|σn|}n≥1)

5.
{
σrj

}
converges: ℜ

(
σrj

)
↑ a0 > 0,ℑ

(
σrj

)
→ b0 (by the compactness of the circle

|z| = R0)

6.
∣∣ℑ (∆rj

)∣∣→ d0 (by requirement 2 and (4.1)), whence b0 ̸= 0
(we have

(ℜ
(
σrj

)
−ℜ

(
∆rj

)
)2 + (ℑ

(
σrj

)
−ℑ

(
∆rj

)
)2 = R2

1 ≤ R2
0

⇒ R2
0 +O

(
ℜ
(
∆rj

))
− 2ℑ

(
σrj

)
ℑ
(
∆rj

)
+ ℑ

(
∆rj

)2 ≤ R2
0

⇒ O
(
ℜ
(
∆rj

))
+ ℑ

(
∆rj

) (
ℑ
(
∆rj

)
− 2ℑ

(
σrj

))
≤ 0.(4.2)

If b0 = 0, then letting j → ∞ we have d20 ≤ 0, a contradiction.)

7. ℑ
(
∆rj

)
are of the same ± sign as u for all j, and ℑ

(
∆rj

)
→ ud0

(suppose
{
σrj

}
is a subsequence satisfying requirement 1-6. By (4.2), given ε > 0,

for all large j we have ε > d20 − 2ℑ
(
∆rj

)
b0 = d20 − 2ℑ

(
∆rj

)
u |b0|. If u = 1 and

ℑ
(
∆rj

)
≤ 0, then this inequality gives ε > d20, which is a contradiction for small

ε. The same happens if u = −1 and ℑ
(
∆rj

)
≥ 0. Therefore, ℑ

(
∆rj

)
is of the

same ± sign as u for all large j.)
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8.
{
σ−1+rj

}
converges (by the compactness of the circle |z| = R1)

9. Writing
σrj := R0e

iϕj , σ−1+rj := R1e
iθj

where ϕj, θj ∈ [0, 2π), there exists Γ ∈ R such that ϕj − θj ≡ Γ for all j.
(we have ∣∣σrj − σ−1+rj

∣∣2 = ∣∣∆rj

∣∣2 ≡ d20 = constant
⇒ (R0 cosϕj −R1 cos θj)

2 + (R0 sinϕj −R1 sin θj)
2 ≡ constant

⇒ cosϕj cos θj + sinϕj sin θj ≡ constant
⇒ cos(ϕj − θj) ≡ constant)

10. ℑ
(
σ−1+rj

)
are all of the same ± sign:

{
ℑ
(
σ−1+rj

)}∞
j=1

⊆ (0,∞) or ⊆ (−∞, 0)

(suppose
{
σrj

}
is a subsequence satisfying requirement 1-9. If ℑ

(
σ−1+rj

)
= 0 for

some j, then by ℜ
(
σ−1+rj+1

)
≥ ℜ

(
σrj

)
> ℜ

(
σ−1+rj

)
> 0 and

∣∣ℑ (σ−1+rj+1

)∣∣ ≥
0 =

∣∣ℑ (σ−1+rj

)∣∣ , we have R1 =
∣∣σ−1+rj+1

∣∣ > ∣∣σ−1+rj

∣∣ = R1, a contradiction.
Therefore, by taking a subsequence of

{
σrj

}
if necessary, we can have this “same

± sign” property.)
Define v := 1 if

{
ℑ
(
σ−1+rj

)}∞
j=1

⊆ (0,∞), and v := −1 otherwise.

This ends our construction of
{
σrj

}∞
j=1

.
When u = 1, the situation is like the top row of the following figure:

The bottom row on the other hand illustrates why there should be contradictions.
To be precise, write

R0e
iϕ∗ := lim

j→∞
σrj , R1e

iθ∗ := lim
j→∞

σ−1+rj ,
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where ϕ∗, θ∗ ∈ [0, 2π). As limj→∞ σ−1+rj = lim σrj − lim∆rj = a0 + i(b0 − ud0), we
have

(4.3) ℜ
(
R0e

iϕ∗
)
= a0 = ℜ

(
R1e

iθ∗
)
.

Also, observe that

σ−1+rj+1
= R1e

iθj+1 = ei(θj+1−θj)σ−1+rj ,

σrj+1
= R0e

i(θj+1+Γ) = ei(θj+1−θj)σrj .
(4.4)

We shall finish the proof by showing a contradiction for each of the following four
cases:

(i) b0 > 0, v = −1;

(ii) b0 < 0, v = 1;

(iii) b0 > 0, v = 1;

(iv) b0 < 0, v = −1.

Suppose case(i) happens. Then ϕ∗ ∈ (0, π/2), and 3π/2 < θ1 < θ2 < · · · < 2π.
There exists ε0 > 0 such that ϕ∗ + 2ε0 < π/2. With this ε0, for all large j we have{

0 < ϕj < ϕ∗ + ε0
0 < θj+1 − θj < ε0,

whence 0 < ϕj < ϕj + θj+1 − θj < ϕ∗ + 2ε0 < π/2. As a result, we have 0 <
cos(θj+1− θj +ϕj) < cosϕj. But by (4.4), ϕj+1 = θj+1− θj +ϕj, whence ℜ

(
σrj+1

)
=

R0 cosϕj+1 < R0 cosϕj = ℜ
(
σrj

)
, showing a contradiction. This means that case(i)

is impossible. Case(ii) can be excluded by a similar argument.
Next, suppose case(iii) happens. Then ϕ∗ ∈ (0, π/2), θ∗ ∈ [0, π/2), θj ∈ (0, π/2),

and θj ↓ θ∗. By (4.4), we see that σ−1+rj = ei(θj−θ1)σ−1+r1 and σrj = ei(θj−θ1)σr1 , so
letting j → ∞, we have

(4.5) R1e
iθ∗ = ei(θ∗−θ1)σ−1+r1 , R0e

iϕ∗ = ei(θ∗−θ1)σr1 .

It follows that

ℜ
(
R1e

iθ∗
)
= ℜ

(
ei(θ∗−θ1)σ−1+r1

)
= |cos(θ∗−θ1)|ℜ (σ−1+r1)+|sin(θ∗−θ1)|ℑ (σ−1+r1) .

Since b0 > 0, we have u = 1 and so ℑ (∆r1) > 0. Together with ℜ (∆r1) > 0, we get

ℜ
(
R1e

iθ∗
)
< |cos(θ∗ − θ1)| ℜ (σr1) + |sin(θ∗ − θ1)| ℑ (σr1) = ℜ

(
R0e

iϕ∗
)

by (4.5).

This contradicts (4.3) however. This means that case(iii) is impossible. By a similar
argument case(iv) can be excluded too. This completes the proof.

Q.E.D.

Below is our major tool for handling conjugates on the unit circle. The proof is
adapted from [1, proof of Proposition 3.2].
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Lemma 4.3 (Sufficient condition for |A| ̸= 1)
Let A be an algebraic conjugate of q. Suppose there exist y ∈ Y \{0} and {si(q)}∞i=1 ⊆
(D(q)−D(q)) such that

1. y =
∞∑
i=1

si(q)

qi
;

2. There exist K0 ≥ 0 and w ∈ C \ {0} such that

C+ := −ℜ (σA(y)w) +

K0∑
i=1

ℜ
(
si(A)w

Ai

)
> 0

and ℜ
(
si(A)w

Ai

)
≥ 0 for all i ≥ K0 + 1.

If Φ satisfies the FTC, then |A| ̸= 1.

Proof
It is proved by contradiction. Suppose on the contrary |A| = 1. Since y ∈ Y , we
can write

y =: −
0∑

i=−u0

si(q)

qi
, where si(q) ∈ (D(q)−D(q)) for all −u0 ≤ i ≤ 0.

Consider the sequence {si(q)}∞i=−u0
. As y ̸= 0, we have si(q) ̸= 0 for some −u0 ≤

i ≤ 0. We claim that si(q) ̸= 0 infinitely often. For, suppose si(q) = 0 for all but a
finite number of i. Letting sp0(q) be the last non-zero term, by hypothesis we have

(4.6) 0 =
∞∑
−u0

si(q)

qi
=

p0∑
−u0

si(q)

qi
.

But then

0 = ℜ

(
w · σA

(
p0∑
−u0

si(q)

qi

))
=

p0∑
−u0

ℜ
(
si(A)w

Ai

)

=

K0∑
−u0

ℜ
(
si(A)w

Ai

)
+

∞∑
K0+1

ℜ
(
si(A)w

Ai

)
= C+ +

∞∑
K0+1

ℜ
(
si(A)w

Ai

)
≥ C+ > 0,

showing a contradiction. This verifies our claim.
Now, since Ai gives rise to irrational rotation and (D(A)−D(A)) is a finite set,

there exists a positive integer N > K0 such that ℜ (sw/Ai) ̸= 0 for all nonzero
s ∈ (D(A)−D(A)) \ {0} and all i ≥ N (Lemma 4.1). Using such N , we define

σn :=
n+N∑
i=−u0

si(A)w

Ai
.

As ℜ (σ1) ≥ C+, we are in the same situation as in the preceding Proposition 4.2.
Therefore, {|σn|}∞n=1 cannot be a finite set. However, this contradicts the FTC (p.11
Proposition 2.2). This completes the proof.

Q.E.D.
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4.2 Proof of the general cases, part I
We split the goal of this chapter, p.4 Theorem 1.4, into two propositions:

Proposition 4.4 (General cases, part I)
Let A be an algebraic conjugate of q. Suppose one of the following holds:

• bi/bm ∈ Q for all i;

• m ≤ 2;

• m = 3 and Lℓ(A,w) does not have code ⟨1302⟩ or ⟨1032⟩ for all nonzero w
and all ℓ ≥ 1.

If Φ satisfies the FTC, then |A| < 1.

Proposition 4.5 (General cases, part II)
Let A be an algebraic conjugate of q. Suppose m = 3. If Φ satisfies the FTC, then
|A| < 1.

We prove the former in this section and handle the latter in the next. The
following proposition, which we call “basic move”, will be used repeatedly in our
argument.

Proposition 4.6 (Basic move)
Let A be an algebraic conjugate of q and G = G(A) ⊆ C a set of complex numbers.
Suppose there exist y ∈ Y ∩ (0, 1) and ϖ ∈ C \ {0} such that

ℜ (σA(y)ϖ) < 0 and −ℜ (σA(y)ϖ) + ℜ (ζϖ) > 0 for all ζ ∈ G.

Let w := ϖ. Suppose further that given any k0 ≥ 1, there exists S = S(w, k0) ⊆
(D(q)−D(q)) satisfying the following properties:

• q − 1 ∈ S and minS ≤ 0;

• gapmax(S) ≤ 1;

• given any δ ∈ S, there exists ζ ∈ G such that

(p)
k0−1∑
i=1

ℜ
(
(A− 1)w

Ai

)
+ ℜ

(
σA(δ)w

Ak0

)
≥ ℜ (ζw) .

If Φ satisfies the FTC, then |A| < 1.

Proof
It is proved by contradiction. Suppose on the contrary |A| ≥ 1. By hypothesis, we
have

(4.7) ℜ (σA(y)w) < 0 and −ℜ (σA(y)w) + ℜ (ζw) > 0 for all ζ ∈ G.
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With Li = Li(A,w) and H+
i = H+

i (A,w), let k0 be the smallest non-negative integer
such that

y ≤
k0∑
i=1

q − 1

qi
+

∞∑
i=k0+1

maxH+
i

qi
.

Let k∗
0 :=

{
1 if k0 = 0

k0 otherwise
. For each i ≥ k∗

0, we define a set Ei ⊆ (D(q)−D(q)). If

k0 = 0, then we define Ei := H+
i for all i ≥ k∗

0. Else if k0 ≥ 1, then we take

Ei :=

{
S(w, k0) if i = k∗

0

H+
i if i > k∗

0.

Since q − 1 belongs to S, we have

y −
k∗0−1∑
i=1

q − 1

qi
≤

∞∑
i=k∗0

maxEi

qi
.

As minS ≤ 0 and 0 ∈ H+
i , by y > 0 and the definition of k0 we also have

y −
k∗0−1∑
i=1

q − 1

qi
>


0 if k0 = 0(

k∗0−1∑
i=1

q − 1

qi
+

∞∑
i=k∗0

maxH+
i

qi

)
−

k∗0−1∑
i=1

q − 1

qi
if k0 ≥ 1

≥
∞∑

i=k∗0

minEi

qi
.

Moreover, in view of the structure of H+
i (p.13 Lemma 2.4) and the hypothesis on

S, we have

gapmax(Eℓ) ≤ 1 = qℓ
∞∑

i=ℓ+1

maxEi −minEi

qi

for all ℓ ≥ k∗
0. Thus, our lazy algorithm (p.12 Proposition 2.3), applied to x :=

y −
∑k0−1

1
q−1
qi

, gives

(4.8) y −
k0−1∑
i=1

q − 1

qi
=

∞∑
i=k∗0

ti
qi

with ti ∈ Ei for all i ≥ k∗
0.

Define a real number c+ ∈ R by

(4.9) c+ :=

{
−ℜ (σA(y)w) if k0 = 0

−ℜ (σA(y)w) +
∑k0−1

1 ℜ
(

(A−1)w
Ai

)
+ ℜ

(
σA(tk0 )w

Ak0

)
otherwise.

We claim that c+ is positive from this definition. Note that by (4.7), c+ is positive
if k0 = 0. Else if k0 ≥ 1, then as tk0 ∈ S(w, k0), so by the hypothesis on S, there
exists ζ ∈ G such that c+ ≥ −ℜ (σA(y)w)+ℜ (ζw), which is positive by (4.7). This
justifies the claim.
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We proceed to handle the cases |A| > 1 and |A| = 1 separately.

Case |A| > 1: In this case, as a consequence of the FTC (p.11 Proposition 2.2), we
obtain from (4.8) and (4.9) that

−c+ = ℜ

(
∞∑

i=k0+1

σA(ti)

Ai
w

)
.

As ti ∈ H+
i ⊆ Li for all i ≥ k0 + 1, the R.H.S. is ≥ 0, which contradicts c+ > 0.

Case |A| = 1: In this case, we can apply p.35 Lemma 4.3 with K0 := k0 to reach a
contradiction.

Q.E.D.

To satisfy the conditions of the basic move, we have the following result.

Lemma 4.7 (Availability of S for simple patterns)
Let A be an algebraic conjugate of q, w ∈ C \ {0} a nonzero complex number, and ℓ
a positive integer. Suppose one of the following holds:

• bi/bm ∈ Q for all i;

• m ≤ 2;

• m = 3 and Lℓ = Lℓ(A,w) does not have code ⟨1302⟩ or ⟨1032⟩.

Then there exists Sℓ = Sℓ(A,w) ⊆ (D(q)−D(q)) such that

1. q − 1 ∈ Sℓ and minSℓ ≤ 0;

2. gapmax(Sℓ) ≤ 1;

3. for all δ ∈ Sℓ, at least one of the following holds:

(i) ℜ
(

σA(δ)w
Aℓ

)
≥ 0. (ii) ℜ

(
σA(δ)w

Aℓ

)
≥ ℜ

(
(A−1)w

Aℓ

)
.

Proof
If bi/bm ∈ Q for all i, then Lℓ has code ⟨m (m− 1) · · · 1 0⟩ or ⟨0 1 · · · (m− 1)m⟩.
Hence, for Sℓ := {[m; ∗]}, either 3(i) or 3(ii) holds for all δ ∈ Sℓ. The case m = 1 is
similar. If m = 2, we can use

Sℓ :=

{
{[2; 0] , [2; 1] , 0} if Lℓ has code ⟨210⟩ , ⟨201⟩ , ⟨021⟩ or ⟨012⟩
{[2; 0] , [1; 0] , 0} if Lℓ has code ⟨102⟩ or ⟨120⟩.

Lastly, for m = 3, the possible codes of Lℓ are

⟨0123⟩ ⟨0132⟩ ⟨0213⟩ ⟨0231⟩ ⟨0312⟩ ⟨0321⟩
⟨1023⟩ ����⟨1032⟩ ⟨1203⟩ ⟨1230⟩ ����⟨1302⟩ ⟨1320⟩
⟨2013⟩ ⟨2031⟩ ⟨2103⟩ ⟨2130⟩ ⟨2301⟩ ⟨2310⟩
⟨3012⟩ ⟨3021⟩ ⟨3102⟩ ⟨3120⟩ ⟨3201⟩ ⟨3210⟩ .
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We can define Sℓ according to the following table:

Code of Lℓ Sℓ

⟨0 · · ·⟩ {[3; 0] , [3; 1] , [3; 2] , 0}
⟨1023⟩ , ⟨1203⟩ , ⟨1230⟩ or ⟨1320⟩ {[3; 0] , [2; 0] , [1; 0] , 0}

⟨2 · · ·⟩ {[3; 0] , [2; 0] , [2; 1] , 0}
⟨3 · · ·⟩ {[3; 0] , [3; 1] , [3; 2] , 0}

Q.E.D.

We are now ready to achieve the target of this section.

Proof of the general cases, part I (p.36 Proposition 4.4)
It is proved by contradiction. Suppose on the contrary |A| ≥ 1. Let y ∈ Y ∩ (0, 1)
and ϖε ∈ C \ {0} be obtained from p.17 Proposition 2.8(d), where ε := 0.5 (the
value of ε is not important in this proof). Let G ⊆ C be defined by

G :=

{
1− 1

Aℓ
: ℓ ≥ 0

}
.

By the assumption |A| ≥ 1, we have G ⊆ D1(1). Therefore, by the properties of y
and ϖε, we have

ℜ (σA(y)ϖε) < 0 and −ℜ (σA(y)ϖε) + ℜ (ζϖε) > 0 for all ζ ∈ G.

Let w := ϖε. Given k0 ≥ 1, we take S = S(w, k0) := Sk0(A,w) using the preceding
Lemma 4.7. We apply the basic move (Proposition 4.6) and it remains to check (p).

This can be shown as follows. Given δ ∈ S, by the property of Sk0 , one of the
following holds:

(i) ℜ
(
σA(δ)

Ak0
w

)
≥ 0; or (ii) ℜ

(
σA(δ)

Ak0
w

)
≥ ℜ

(
(A− 1)

Ak0
w

)
.

Hence, the L.H.S. of (p) is ≥ ℜ
((

1− 1

Aj

)
w

)
, where j equals k0 − 1 or k0. This

fits the definition of G and (p).
Q.E.D.

4.3 Proof of the general cases, part II
To accomplish the goal of this chapter, it remains to prove part II of the general
cases (p.36 Proposition 4.5). The focus of this section therefore is the case m = 3
(i.e. Φ = {ρx+ ∂iρ}3i=0 is a 4-tuple). Let a, b ∈ Q[q] be such that

∂0 ∂1 ∂2 ∂3
0 a q − 1− b q − 1

.

Define two subsets Sa, Sb of (D(q)−D(q)) by

Sa
def= {[3; 0] , [3; 1] , [3; 2] , 0} = {q − 1, q − 1− a, b, 0} ,

Sb
def= {[3; 0] , [2; 0] , [1; 0] , 0} = {q − 1, q − 1− b, a, 0} .
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Also, given an algebraic conjugate A of q, define two sets Ga, Gb by

Ga = Ga(A)
def=
{
1− 1

Aℓ
: ℓ ≥ 0

}
∪
{
1− 1 + σA(a)

Aℓ
: ℓ ≥ 1

}
,

Gb = Gb(A)
def=
{
1− 1

Aℓ
: ℓ ≥ 0

}
∪
{
1− 1 + σA(b)

Aℓ
: ℓ ≥ 1

}
.

Lemma 4.7 (p.38) reveals that there are only two code representations that are
resistant to our previous strategy. They are ⟨1302⟩ and ⟨1032⟩. We highlight the
following heuristic: when using the basic move (p.36 Proposition 4.6) for the case
m = 3, in many situations we are able to conclude that Lk0(A,w) has code ⟨1302⟩
or ⟨1032⟩, and that δ = q − 1− a or q − 1− b in (p) according to S = Sa or Sb.

Lemma 4.8 (4-tuple: Upper bounds of |A|)
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
If |A| ≥ 1, then

(i) |A| < |1 + σA(a)| ; (ii) |A| < |1 + σA(b)|.

Proof
It is proved by contradiction. To begin with, let y ∈ Y ∩ (0, 1) and ϖε ∈ C \ {0}
be obtained from p.17 Proposition 2.8(d), where ε := 0.5 (the value of ε is not
important in this proof).

(i) Suppose on the contrary |A| ≥ |1 + σA(a)|. Let G := Ga(A). By our assumption
and by |A| ≥ 1, we have G ⊆ D1(1). Therefore, by the properties of y and ϖε,
we have

(4.10) ℜ (σA(y)ϖε) < 0 and −ℜ (σA(y)ϖε) + ℜ (ζϖε) > 0 for all ζ ∈ G.

We use the basic move (p.36 Proposition 4.6) to reach a contradiction. Let
w := ϖε. Given k0 ≥ 1, take

S(w, k0) :=

{
Sk0(A,w) if Lk0(A,w) does not have code ⟨1302⟩ or ⟨1032⟩
Sa otherwise,

where Sk0(A,w) is from p.38 Lemma 4.7. It remains to check (p).
Given δ ∈ S = S(w, k0), if one of the following holds:

(4.11) (i) ℜ
(
σA(δ)w

Ak0

)
≥ 0; or (ii) ℜ

(
σA(δ)w

Ak0

)
≥ ℜ

(
(A− 1)w

Ak0

)
,

then the L.H.S. of (p) is ≥ ℜ
((

1− 1

Aj

)
w

)
, where j equals k0 − 1 or k0,

whence (p) is fulfilled by the definition of G. Else, suppose (4.11) does not hold.
In view of the properties of Sk0(A,w) from Lemma 4.7, we see that Lk0(A,w)
has code ⟨1302⟩ or ⟨1032⟩, and δ ∈ Sa = {[3; 0] , [3; 1] , [3; 2] , 0}. As δ does not
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satisfy (4.11), the code of Lk0(A,w) forces δ = [3; 1] = q− 1− a. Here [3; 1] may
be called a “compulsory digit”. It follows that the L.H.S. of (p) equals

ℜ
((

1− 1 + σA(a)

Ak0

)
w

)
.

Again (p) is fulfilled by the definition of G. This completes the proof of part(i).

(ii) To prove this, we just need to repeat the proof of part(i) with b in place of a,
so that we use Gb,Sb instead of Ga,Sa. The “compulsory digit” will be [2; 0] =
q − 1− b instead of q − 1− a.

Q.E.D.

Lemma 4.9 (4-tuple: Inequalities for Ycore)
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
If |A| ≥ 1, then for all y ∈ Ycore, we have

(i)
∣∣∣∣σA(a) + 1

A

∣∣∣∣ ≥ |σA(y)− 1| ; (ii)
∣∣∣∣σA(b) + 1

A

∣∣∣∣ ≥ |σA(y)− 1|.

Proof
It is proved by contradiction. Plainly the statements are true when y = 1, so we
may only consider y ∈ Y ∩ (0, 1).

(i) Suppose on the contrary
∣∣∣∣σA(a) + 1

A

∣∣∣∣ < |σA(y)− 1| for some y ∈ Y ∩ (0, 1).

Noting that |A| < |1 + σA(a)| by the preceding Lemma 4.8, we have

(4.12) 1 < |σA(y)− 1| .

Let Ω0 := eiθ be such that ℜ ((σA(y)− 1)Ω0) = − |σA(y)− 1| and G := Ga(A).
We claim that

(I) ℜ (σA(y)Ω0) < 0 and (II) −ℜ (σA(y)Ω0) + ℜ (ζΩ0) > 0 for all ζ ∈ G.

For, if ζ = 1− 1/Aℓ with ℓ ≥ 0, then by (4.12)

−ℜ (σA(y)Ω0) + ℜ (ζΩ0) = |σA(y)− 1| − ℜ
(
Ω0

Aℓ

)
> 1− |Ω0|

|A|ℓ
≥ 0.

Else if ζ = 1− (1 + σA(a))/A
ℓ with ℓ ≥ 1, then

−ℜ (σA(y)Ω0) + ℜ (ζΩ0) = |σA(y)− 1| − ℜ
(
1 + σA(a)

Aℓ
Ω0

)
≥ |σA(y)− 1| − |1 + σA(a)|

|A|
.

Noting that the last expression is > 0 by our initial assumption, we have verified
the claim. It may also be illustrated by the following figure:
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Now we are like having (4.10), with Ω0 in place of ϖε. We can use the same
argument as in the proof of Lemma 4.8(i) to reach a contradiction.

(ii) As in the proof of Lemma 4.8(ii), we just need to repeat the argument in part(i)
with b in place of a.

Q.E.D.

Corollary 4.10 (4-tuple: Asymmetric IFS with ℜ (σA(a)) ,ℜ (σA(b)) ≥ 0)
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
If |A| ≥ 1, then

(i) a ̸= b ;

(ii) ℜ (σA(a)) ≥ 0 and ℜ (σA(b)) ≥ 0.

Proof
It is proved by using the previous two lemmas.

(i) Suppose on the contrary a = b. Taking y := [2; 1] = q−1−2a in Lemma 4.9(i),
we have

|σA(a) + 1| ≥
∣∣∣∣σA(a) + 1

A

∣∣∣∣ ≥ |A− 2− 2σA(a)| ≥ 2 |1 + σA(a)| − |A| .

On the other hand, we have |A| < |1 + σA(a)| by Lemma 4.8(i). Therefore the
above is a contradiction.
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(ii) Suppose ℜ (σA(a)) < 0. Then in the complex plane, the point σA(a) is closer
to the point −1 then 1, whence |σA(a) + 1| < |σA(a)− 1|. This contradicts
Lemma 4.9(i) nevertheless (with y := a). This shows ℜ (σA(a)) ≥ 0. By a
similar argument using y := [3; 2] = b, we get ℜ (σA(b)) ≥ 0 too.

Q.E.D.

We remark that although part (i) of the preceding corollary sheds some light on
the issue, it will not be used directly in our subsequent argument.

Lemma 4.11 (4-tuple: One way or another)
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
If |A| ≥ 1, and ℜ (A) < 1 + ℜ (σA(a)), then for y := [2; 1] = q − 1 − a − b the
following holds. For each ℓ ≥ 1, there exists δℓ ∈ {a, b} such that

−ℜ (σA(y)) + ℜ
(
1− 1 + σA(δℓ)

Aℓ

)
> 0.

Proof
It is proved by contradiction. Suppose on the contrary there is some ℓ ≥ 1 such that

−ℜ (σA(y)) + ℜ
(
1− 1

Aℓ−1

)
+ ℜ

(
A− 1− σA(a)

Aℓ

)
≤ 0

−ℜ (σA(y)) + ℜ
(
1− 1

Aℓ

)
−ℜ

(
σA(b)

Aℓ

)
≤ 0.

Let ξ := 1− 1

Aℓ
. Noting that both ℜ

(
1− 1

Aℓ−1

)
,ℜ
(
1− 1

Aℓ

)
≥ 0, we have

(4.13)
−ℜ ([A− 1− σA(a)]ξ) + ℜ (σA(b)) = −ℜ (σA(y)) + ℜ

(
A− 1− σA(a)

Aℓ

)
≤ 0

−ℜ (A− 1− σA(a)) + ℜ (σA(b)ξ) = −ℜ (σA(y))−ℜ
(
σA(b)

Aℓ

)
≤ 0.

As ℜ (A− 1− σA(a)) < 0 by hypothesis and ℜ (ξ) ≥ 0, the first inequality gives

ℜ (σA(b)) ≤ ℜ ([A− 1− σA(a)]ξ)

= ℜ (A− 1− σA(a))ℜ (ξ)−ℑ (A− 1− σA(a))ℑ (ξ)

≤ −ℑ (A− 1− σA(a))ℑ (ξ) .

Noting that ℜ (σA(b)) ≥ 0 by Corollary 4.10, we see that ℑ (A− 1− σA(a)) and
ℑ (ξ) have different ± signs (including zero). Similarly, the second inequality of
(4.13) gives

ℜ (A− 1− σA(a)) ≥ ℜ (σA(b)ξ)

= ℜ (σA(b))ℜ (ξ)−ℑ (σA(b))ℑ (ξ)

≥ −ℑ (σA(b))ℑ (ξ) .

As ℜ (A− 1− σA(a)) < 0 by hypothesis, we see that ℑ (σA(b)) and ℑ (ξ) have the
same ± sign. We conclude that ℑ (A− 1− σA(a)) and ℑ (σA(b)) = ℑ (1 + σA(b))
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have different ± signs (including zero). Together with ℜ (A− 1− σA(a)) < 0 ≤
ℜ (σA(b)) < ℜ (1 + σA(b)), we have{

|ℑ (A− 1− σA(a)− σA(b)− 1)| ≥ |ℑ (1 + σA(b))|
|ℜ (A− 1− σA(a)− σA(b)− 1)| > |ℜ (1 + σA(b))| ,

whence
|A− 1− σA(a)− σA(b)− 1| > |1 + σA(b)| .

However, one of the inequalities for Ycore (Lemma 4.9) gives

|1 + σA(b)| ≥
|1 + σA(b)|

|A|
≥ |σA(y)− 1|

(as y = q − 1 − a − b = [2; 1] belongs to Ycore). This shows a contradiction and
completes the proof.

Q.E.D.

Lemma 4.12 (4-tuple: Dominance of ℜ (A))
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
If |A| ≥ 1, then

(i) ℜ (A) ≥ 1 + ℜ (σA(a)) ; (ii) ℜ (A) ≥ 1 + ℜ (σA(b)).

Proof
We prove (i) first and it is proved by contradiction. Suppose on the contrary ℜ (A) <
1 + ℜ (σA(a)). Let y := [2; 1] = q − 1 − a − b. As ℜ (σA(b)) ≥ 0 by Corollary 4.10,
we have ℜ (σA(y)) = ℜ (A− 1− σA(a)) − ℜ (σA(b)) < 0, so y ∈ Y ∩ (0, 1). Define
G ⊆ C by

G :=

{
1− 1

Aℓ
: ℓ ≥ 0

}
∪
{
1− 1 + σA(δℓ)

Aℓ
: ℓ ≥ 1

}
,

where δℓ is given by the preceding Lemma 4.11. By that result, we have

ℜ (σA(y)) < 0 and −ℜ (σA(y)) + ℜ (ζ) > 0 for all ζ ∈ G.

Once again we use the basic move (p.36 Proposition 4.6) to reach a contradiction.
Let w := 1. Given k0 ≥ 1, take

S(w, k0) :=

{
Sk0(A,w) if Lk0(A,w) does not have code ⟨1302⟩ or ⟨1032⟩
Sδk0

otherwise,

where Sk0(A,w) is from p.38 Lemma 4.7. It remains to check (p).
Given δ ∈ S, if one of the following holds:

(4.14) (I) ℜ
(
σA(δ)w

Ak0

)
≥ 0; or (II) ℜ

(
σA(δ)w

Ak0

)
≥ ℜ

(
(A− 1)w

Ak0

)
,

then the L.H.S. of (p) is ≥ ℜ
((

1− 1

Aj

)
w

)
, where j equals k0 − 1 or k0, whence

(p) is fulfilled by the definition of G. Else, suppose (4.14) does not hold. In view of
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the properties of Sk0(A,w) from Lemma 4.7, we see that Lk0(A,w) has code ⟨1302⟩
or ⟨1032⟩, and

δ ∈

{
Sa = {[3; 0] , [3; 1] , [3; 2] , 0} if δk0 = a

Sb = {[3; 0] , [2; 0] , [1; 0] , 0} if δk0 = b.

As δ does not satisfy (4.14), we have

δ =

{
[3; 1] if δk0 = a

[2; 0] if δk0 = b,

so that δ = q − 1− δk0 . It follows that the L.H.S. of (p) equals

ℜ
((

1− 1 + σA(δk0)

Ak0

)
w

)
.

Again (p) is fulfilled by the definition of G. This completes the proof of part(i).
To get a proof of part (ii), we just need to interchange the roles of a and b in the

previous argument.
Q.E.D.

Corollary 4.13 (4-tuple: Requirement of configuration)
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
If |A| ≥ 1, then

(i) ℜ (A) ≥ 1 ;

(ii) |A| ̸= 1 ;

(iii) |ℑ (A)| < |ℑ (σA(a))| and |ℑ (A)| < |ℑ (σA(b))| ;

(iv) ℜ (σA(a)) > 0 and ℜ (σA(b)) > 0.

Proof
We have ℜ (σA(a)) ≥ 0 by Corollary 4.10, hence the preceding Lemma 4.12 gives
(i). (ii) follows from (i) as A ̸= 1. For (iii), as we have the upper bound |A| <
|1 + σA(a)| (Lemma 4.8), and Lemma 4.12 shows the dominance of ℜ (A), therefore
|ℑ (A)| < |ℑ (1 + σA(a))| = |ℑ (σA(a))|. Similarly we have |ℑ (A)| < |ℑ (σA(b))|.
For (iv), taking y := [1; 0] = a in one of the inequalities for Ycore (Lemma 4.9), we
have

|σA(a)− 1| ≤ |σA(a) + 1|
|A|

.

Since |A| > 1 by (ii), we have |σA(a)− 1| < |σA(a) + 1|, whence ℜ (σA(a)) > 0. The
inequality for b can be proved similarly using y := [3; 2] = b.

Q.E.D.

By part (ii) of the preceding result, from now on we can restrict our attention
to the case |A| > 1.



46 Chapter 4. General cases

Lemma 4.14 (4-tuple: Arguments)
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
Write

A =: rA exp(iθA),

1 + σA(a) =: rα exp(iθα),

1 + σA(b) =: rβ exp(iθβ),

where θA, θα, θβ ∈ [−π/2, π/2] by Corollary 4.13. If |A| > 1 and |θα − θβ| ≤ π/2,
then we have θα ̸= θβ, and θA is strictly between θα and θβ. That is, θA ∈
(min {θα, θβ} ,max {θα, θβ}).

Proof
Using y := [2; 1] in the inequalities for Ycore (Lemma 4.9), we have

(4.15) |A− 1− σA(a)− 1− σA(b)|2 < min
{
|1 + σA(a)|2 , |1 + σA(b)|2

}
.

The L.H.S. is

= (rA cos θA − rα cos θα − rβ cos θβ)
2 + (rA sin θA − rα sin θα − rβ sin θβ)

2

= r2A + r2α + r2β + 2rαrβ(cos θα cos θβ + sin θα sin θβ)

− 2rαrA(cos θα cos θA + sin θα sin θA)− 2rβrA(cos θβ cos θA + sin θβ sin θA)

= r2A + r2α + r2β + 2rαrβ cos(θα − θβ)− 2rαrA cos(θα − θA)− 2rβrA cos(θβ − θA).

By hypothesis, we have cos(θα − θβ) ≥ 0. Hence, if cos(θα − θβ) ≥ cos(θα − θA),
then by rβ > rA (Lemma 4.8) we have

2rαrβ cos(θα − θβ)− 2rαrA cos(θα − θA) ≥ 0,

whence the L.H.S. of (4.15) is

≥ r2A + r2α + r2β − 2rβrA cos(θβ − θA)

≥ r2A + r2α + r2β − 2rβrA ≥ r2α = |1 + σA(a)|2 .

This contradicts (4.15). We get a similar contradiction if cos(θα−θβ) ≥ cos(θβ−θA).
Therefore, we see that {

cos(θα − θβ) < cos(θα − θA)
cos(θα − θβ) < cos(θβ − θA).

As θA, θα, θβ ∈ [−π/2, π/2], using a picture we conclude that θA is between θα
and θβ. As the above inequalities are strict, we have θα ̸= θβ and therefore θA ∈
(min {θα, θβ} ,max {θα, θβ}).

Q.E.D.
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Corollary 4.15 (4-tuple: σA(a) and σA(b) are separated by the real axis)
Let Φ be a 4-tuple and A an algebraic conjugate of q. Suppose Φ satisfies the FTC.
If |A| > 1, then ℑ (σA(a)) and ℑ (σA(b)) have different ± signs.

Proof
It is proved by contradiction. Firstly, suppose both ℑ (σA(a)) and ℑ (σA(b)) are
≥ 0. By the configuration requirement (Corollary 4.13) and the dominance of ℜ (A)
(Lemma 4.12), we have{

ℑ (1 + σA(a)) ,ℑ (1 + σA(b)) > |ℑ (A)|
1 ≤ ℜ (1 + σA(a)) ,ℜ (1 + σA(b)) ≤ ℜ (A) ,

whence {
rα sin θα, rβ sin θβ > |rA sin θA|
1 ≤ rα cos θα, rβ cos θβ ≤ rA cos θA,

where we have used the same notation as in the preceding Lemma 4.14. Conse-
quently, 

tan θα =
rα sin θα
rα cos θα

>
rA sin θA
rA cos θA

= tan θA

tan θβ =
rβ sin θβ
rβ cos θβ

>
rA sin θA
rA cos θA

= tan θA.

However, as ℑ (1 + σA(a)) and ℑ (1 + σA(b)) are both ≥ 0, we have |θα − θβ| ≤ π/2,
so θA should be strictly between θα and θβ according to Lemma 4.14. This shows a
contradiction.

A similar argument can be used to handle the case both ℑ (σA(a)) and ℑ (σA(b))
are ≤ 0. This completes the proof.

Q.E.D.

It is the time to accomplish the goal of this chapter.

Proof of the general cases, part II (p.36 Proposition 4.5)
It is proved by contradiction. Suppose on the contrary |A| ≥ 1. It implies |A| > 1 by
the configuration requirement (Corollary 4.13). Since Φ satisfies the FTC, it follows
from part I (p.36 Proposition 4.4) that Lℓ(A,w) has code ⟨1302⟩ or ⟨1032⟩ for some
w and ℓ. Using the definition of the code representation, we see that there exists
θ ∈ [0, 2π) such that one of the following holds:

(1) ℜ
(
σA(∂1)e

iθ
)

> ℜ
(
σA(∂3)e

iθ
)

≥ 0 > ℜ
(
σA(∂2)e

iθ
)
, or

(2) ℜ
(
σA(∂1)e

iθ
)

≥ 0 > ℜ
(
σA(∂3)e

iθ
)

≥ ℜ
(
σA(∂2)e

iθ
)
.

By abuse of notation, let us call the first situation as ⟨1302⟩ and the second as
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⟨1032⟩. Accordingly, we have four inequalities:

(4.16)
⟨1 · · · 3 · · ·⟩ ⇒ ℜ

(
σA(a)e

iθ
)
> ℜ

(
σA(q − 1)eiθ

)
⇒ 0 > cos θ · ℜ (A− 1− σA(a))− sin θ · ℑ (A− 1− σA(a)) ;

(4.17)
⟨1 · · · 0 · · ·⟩ ⇒ ℜ

(
σA(a)e

iθ
)
≥ 0

⇒ cos θ · ℜ (σA(a))− sin θ · ℑ (σA(a)) ≥ 0;

(4.18)
⟨· · · 3 · · · 2⟩ ⇒ ℜ

(
σA(q − 1)eiθ

)
≥ ℜ

(
σA(q − 1− b)eiθ

)
⇒ cos θ · ℜ (σA(b))− sin θ · ℑ (σA(b)) ≥ 0;

(4.19)
⟨· · · 0 · · · 2⟩ ⇒ 0 > ℜ

(
σA(q − 1− b)eiθ

)
⇒ 0 > cos θ · ℜ (A− 1− σA(b))− sin θ · ℑ (A− 1− σA(b)) .

Since σA(a), σA(b) are separated by the real axis (Corollary 4.15), so by the
configuration requirement (Corollary 4.13(iii)), there are two cases:


ℑ (σA(a)) > 0, ℑ (σA(b)) < 0
ℑ (A− 1− σA(a)) < 0
ℑ (A− 1− σA(b)) > 0,

or


ℑ (σA(a)) < 0, ℑ (σA(b)) > 0
ℑ (A− 1− σA(a)) > 0
ℑ (A− 1− σA(b)) < 0.

We consider the first case only as the second can be studied similarly. By ℜ (σA(a)),
ℜ (σA(b)) > 0 (Corollary 4.13(iv)) and the dominance of ℜ (A) (Lemma 4.12),

(4.16) gives 0 > cos θ · [≥ 0] − sin θ · [< 0],
(4.17) gives 0 ≥ cos θ · [< 0] − sin θ · [< 0],
(4.18) gives 0 ≥ cos θ · [< 0] − sin θ · [> 0],
(4.19) gives 0 > cos θ · [≥ 0] − sin θ · [> 0].

However, contradictions arise from

the 1st when θ ∈ [0, π/2],
the 2nd when θ ∈ (π/2, π],
the 3rd when θ ∈ (π, 3π/2],
the 4th when θ ∈ (3π/2, 2π).

This completes the proof.
Q.E.D.

So, we have finally finished the proof of the general cases. We end this chapter by
noting that, as a byproduct, we obtain the following result about pattern-avoiding
configurations given by planar point sets.
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Proposition 4.16 (Pattern-avoiding configurations)
Suppose (ζ1, ζ2, g) ∈ C3 satisfies the following conditions:

(i) ℜ (ζ1) > 1, ℜ (ζ2) > 1.

(ii) ℜ (g − ζ1) ≥ 0, ℜ (g − ζ2) ≥ 0.

(iii) |ℑ (ζ1)| > |ℑ (g)|, |ℑ (ζ2)| > |ℑ (g)|.

(iv) ℑ (ζ1) and ℑ (ζ2) have different ± signs.

Then for all θ ∈ [0, 2π), neither (1) nor (2) below holds.

(1) ℜ
(
(ζ1 − 1)eiθ

)
> ℜ

(
(g − 1)eiθ

)
≥ 0 > ℜ

(
(g − ζ2)e

iθ
)
;

(2) ℜ
(
(ζ1 − 1)eiθ

)
≥ 0 > ℜ

(
(g − 1)eiθ

)
≥ ℜ

(
(g − ζ2)e

iθ
)
.

The following figure illustrates this result for the case ℑ (ζ1) > 0 > ℑ (ζ2).
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Chapter 5

Examples

In this chapter, we present examples of Φ satisfying the FTC but the associated q is
not a PV number. We use the concept of basic net interval and characteristic vector
introduced in [20] in our discussion. The definition can be found in Appendix A
(p.81).

As Theorem 1.8 (p.5) states, we demonstrate five examples:

I. Arbitrary m ≥ 5, m odd, and A ∈ R ∩ (1, q).

II. Arbitrary m ≥ 5, m odd, and A ∈ R ∩ (−q,−1).

III. Arbitrary m ≥ 6, m even, and A ∈ R ∩ (1, q).

IV. m = 4, |A| > 1.

V. m = 4, |A| = 1.

They are discovered by educated guess and computer experiment. The first three
are inspired by the result of Chapter 3, while the last two are by Chapter 4. As this
chapter may present overwhelming information, the reader can just take a look at
Example I and V for an understanding of the general ideas.

In the final section, we explain in detail how Example IV and V are found. We
finish by presenting miscellaneous results which are inspired by the examples.

5.1 Example I
Let m ≥ 5 be an odd integer and a ∈ R. Consider the situation{

∂i = i if i ∈ [0, (m− 3)/2]

∂i = q − 1−m+ i if i ∈ [(m+ 3)/2, m]

and

∂(m−3)/2 · · · ∂1 ∂(m−1)/2 ∂m ∂0 ∂(m+1)/2 ∂m−1 · · · ∂(m+3)/2

(m−3)/2 · · · 1 a q−1 0 q−1−a q−2 · · · q−1− (m−3)/2
.

51
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We make some hypotheses in light of the proof of Proposition 3.2 (p.27). We assume
that q has a real algebraic conjugate A > 1, that P(A) has code⟨

m− 3

2
, · · · , m− 1

2
, · · · ,m, · · · , 0, · · · , m+ 1

2
, · · · , m+ 3

2

⟩
,

and that

(5.1)



σA(

[
m− 1

2
;
m− 3

2

]
) =

(A− 1)− m−3
2

A

σA(

[
m+ 1

2
;
m− 1

2

]
) =

(A− 1)− m−3
2

A

σA(

[
m+ 3

2
;
m+ 1

2

]
) =

(A− 1)− m−3
2

A
.

Adding the equations, we have

A−m+ 2 = 3 ·
A− 1− m−3

2

A
⇒ A2 −mA+ 2A = 3A− 1.5m+ 1.5

⇒ A2 − (m+ 1)A+ 1.5m− 1.5 = 0,

whence

q, A =
(m+ 1)±

√
(m+ 1)2 − 6(m− 1)

2
=

(m+ 1)±
√
m2 − 4m+ 7

2
.

As m ≥ 5, we have (m+1)2 ≥ (m+1)2−6(m−1) > 0, so both q and A are positive
real numbers. We have A > 1 because

(m+ 1)−
√
m2 − 4m+ 7

2
> 1 ⇐ (m− 1)2 > (

√
m2 − 4m+ 7)2

⇐ 2m− 6 > 0.

A fortiori q > A > 1. Note that q /∈ N, for otherwise there exists N ∈ N such that
N2 = m2 − 4m+ 7 = (m− 2)2 + 3, whence{

N − (m− 2) = 1
N + (m− 2) = 3.

This gives N = 2 and m = 3, which is a contradiction. From the quadratic equation,
we have q(q − (m + 1)) = 1.5 − 1.5m, whence q−1 =

q − (m+ 1)

1.5− 1.5m
. Therefore, (5.1)

gives

a =
m− 3

2
+

q − 1− m−3
2

q
=

m− 1

2
+

q − (m+ 1)

3
=

2q +m− 5

6
,

and so
∂(m+1)/2 = q − 1− a =

4q −m− 1

6
.
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Figure 5.1.1: 1st iteration of Example I.

Since
(q − 1)− m− 3

2
= 1 +

√
m2 − 4m+ 7

2
> 0,

we see from (5.1) that Φ = {ρx+ ∂iρ}mi=0 is of the required form of Chapter 2
section 2.1.

We proceed to verify that Φ satisfies the FTC. Figure 5.1.1 illustrates the 1st
iteration. In the figure, the horizontal lines represent the intervals [∂i, ∂i + 1]. The
numbers above them are labels for the characteristic vectors. That is, the 1st basic
net intervals give rise to the following characteristic vectors:

S1 ⟨1, [0] , i⟩ (i = 1, . . . ,m− 3)

S2

⟨
q −m+ 2

3
, [0] , 1

⟩
S3

⟨
−q +m+ 1

3
,

[
0,

q −m+ 2

3

]
, i

⟩
(i = 1, 2, 3)

S4

⟨
2q − 2m+ 1

3
,

[
−q +m+ 1

3

]
, i

⟩
(i = 1, 2)

S5

⟨
q −m+ 2

3
,

[
−q +m+ 1

3

]
, 1

⟩
Note that S4 is not degenerate because its first component is positive:

2q − 2m+ 1

3
=

√
m2 − 4m+ 7−m+ 2

3
=

√
m2 − 4m+ 7−

√
m2 − 4m+ 4

3
> 0.

Figure 5.1.2 and 5.1.3 illustrate the 2nd iteration. They reveal that all characteristic
vectors have already appeared among the 1st basic net intervals. The behavior of Φ
is

1 7→ 1m−3 · 2 · 33 · 42 · 5,
2 7→ 1(m−3)/2 · 2 · 32 · 42,
3 7→ 1(m−5)/2 · 2 · 32 · 5,
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Figure 5.1.2: 2nd iteration of Example I. (part one)

Figure 5.1.3: 2nd iteration of Example I. (part two)

4 7→ 3 · 42,
5 7→ 1(m−3)/2 · 32 · 42 · 5,

where for instance the expression “4 7→ 3 · 42” means that an n-th basic net interval
of type S4 produces three (n + 1)-th basic net intervals, one of type S3 and two of
type S4.
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We end by studying some properties of Φ. For small m, we have

m σA(∂1) · · · σA(∂m) Code of P(A)
5 1, 0.422, −0.154, −0.732, 0.267 ⟨125034⟩
7 1, 2, 0.784, −0.430, −1.645, −0.645, 0.354 ⟨21370465⟩
9 1, 2, 3, 1.131, −0.737, −2.605, −1.605, −0.605, 0.394 ⟨3241908576⟩

Noting that A tends to 1.5 as m → ∞:

lim
m→∞

(m+ 1)−
√
m2 − 4m+ 7

2
= lim

m→∞

(m+ 1)2 − (m2 − 4m+ 7)

2[(m+ 1) +
√
m2 − 4m+ 7]

= 1.5,

we have asymptotically

σA(∂1), · · · , σA(∂m−3
2
), σA(∂m−1

2
), σA(∂m+1

2
), σA(∂m+3

2
), · · · , σA(∂m)

≈ 1, · · · , m

2
,

m

6
, −m

6
, −m

2
, · · · , 0.5

and P(A) has code⟨
m− 3

2
· · · m− 1

2
· · · 1 m 0 (m−1) · · · m+ 1

2
· · · m+ 3

2

⟩
.

From the figures, we see that

Ycore = {1, ℓ2, ℓ3 + ℓ4} ,

where ℓi denotes the first component of Si. Note that

ℓ2 =
q −m+ 2

3
= ℓ3 + ℓ4

and

lim
m→∞

q −m+ 2

3
= lim

m→∞

1

3

(√
m2 − 4m+ 7−m

2
+ 2.5

)
=

1

3

(
−4

2 · 2
+ 2.5

)
= 0.5.

5.2 Example II
Let m ≥ 5 be an odd integer and a, b ∈ R. Consider the situation{

∂i = a+ (i− 1)b for all i ∈ [1, (m+ 1)/2]
∂i = q − 1− ∂m−i for all i ∈ [(m+ 1)/2, m],

so that we have

∂1 ∂2 · · · ∂(m−1)/2 ∂0 ∂m ∂(m+1)/2 · · · ∂m−1

a a+ b · · · a+ b(m− 3)/2 0 q − 1 q − 1− ∂(m−1)/2 · · · q − 1− a
.

We make some hypotheses in light of the theorem of ⟨120534⟩ (p.4 Theorem 1.7)
and Example I. We assume that q has a real algebraic conjugate A < −1, that P(A)
has code

⟨1 · · · 0 · · ·m · · · (m−1)⟩ ,
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and that letting τ := σA(a), we have

(5.2)


σA(b) =

A− 1

A
+

(A− 1)− τ

A2

σA(a) =
(A− 1)− τ

A
.

From the last equation, we have τ = (A− 1)/(A+ 1). Consequently,

A− 1 =
m∑
i=1

σA([i; i− 1])

= 2σA(a) + (m− 2)σA(b)

= 2τ + (m− 2)

(
A− 1

A
+

τ

A

)
=

2(A− 1)

A+ 1
+ (m− 2)

(
A− 1

A
+

A− 1

A(A+ 1)

)
.

Multiplying both sides by A(A+ 1)/(A− 1), we have

A2 + A = 2A+ (m− 2)(A+ 2)

⇒ A2 − (m− 1)A− 2(m− 2) = 0,

whence

q, A =
(m− 1)±

√
(m− 1)2 + 8(m− 2)

2
=

(m− 1)±
√
m2 + 6m− 15

2
.

As m ≥ 5, we have (m−1)2 < (m−1)2+8(m−2), so q is positive and A is negative.
We have A < −1 because

(m− 1)−
√
m2 + 6m− 15

2
< −1 ⇐ (m+ 1)2 < (

√
m2 + 6m− 15)2

⇐ 0 < 4m− 16.

A fortiori

q =

∣∣∣∣m− 1

2

∣∣∣∣+
∣∣∣∣∣
√
(m− 1)2 + 8(m− 2)

2

∣∣∣∣∣ > |A| > 1.

Note that q /∈ N, for otherwise there exists N ∈ N such that N2 = m2 + 6m− 15 =
(m+ 3)2 − 24, whence

((m+ 3)−N, (m+ 3) +N) = (1, 24) or (2, 12) or (3, 8) or (4, 6).

Since m is an integer and m ≥ 5, this shows a contradiction. From the quadratic
equation, we have (q + 1)(q −m) = m− 4, whence 1

q + 1
=

q −m

m− 4
. It follows that

a =
q − 1

q + 1
=

q2 − (m+ 1)q +m

m− 4
=

−2q + 3m− 4

m− 4
.
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As q − 1 = 2a+ (m− 2)b, we also have

b =
q − 1− 2a

m− 2
=

mq − 7m+ 12

(m− 4)(m− 2)
.

By q > 1, we have a = (q − 1)/(q + 1) ∈ (0, 1), and by (5.2),

b =
q − 1

q
+

a

q
∈
(
q − 1

q
,
q − 1

q
+

1

q

)
⊆ (0, 1).

Therefore, Φ = {ρx+ ∂iρ}mi=0 is of the required form.
We verify that Φ satisfies the FTC. The first characteristic vector is:

R0 ⟨1, [0] , 1⟩

Figure 5.2.1 illustrates the 1st iteration. The new characteristic vectors are (the 3rd

Figure 5.2.1: 1st iteration of Example II.

components are omitted for brevity):

S1 ⟨a, [0]⟩
⟨
−2q + 3m− 4

m− 4
, [0]

⟩
S2 ⟨1− a, [0, a]⟩

⟨
2q − 2m

m− 4
,

[
0,

−2q + 3m− 4

m− 4

]⟩
S3 ⟨∂2 − 1, [1− a]⟩

⟨
−q + 2m− 3

m− 2
,

[
2q − 2m

m− 4

]⟩
S4 ⟨1− b, [0, b]⟩

⟨
−mq +m2 +m− 4

(m− 4)(m− 2)
,

[
0,

mq − 7m+ 12

(m− 4)(m− 2)

]⟩
S5 ⟨2b− 1, [1− b]⟩

⟨
2mq −m2 − 8m+ 16

(m− 4)(m− 2)
,

[
−mq +m2 +m− 4

(m− 4)(m− 2)

]⟩
S6 ⟨∂2 − 1, [1− b]⟩

⟨
−q + 2m− 3

m− 2
,

[
−mq +m2 +m− 4

(m− 4)(m− 2)

]⟩
S7 ⟨a, [1− a]⟩

⟨
−2q + 3m− 4

m− 4
,

[
2q − 2m

m− 4

]⟩
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Figure 5.2.2: 2nd iteration of Example II. (part one)

Figure 5.2.3: 2nd iteration of Example II. (part two)

Figure 5.2.2 and 5.2.3 illustrate the 2nd iteration. There is one new character-
istic vector:

T8 ⟨2a− 1, [1− a]⟩
⟨
−4q + 5m− 4

m− 4
,

[
2q − 2m

m− 4

]⟩
We note that T8 is not degenerate because its first component is positive:

2 · q − 1

q + 1
= 2a > 1

⇐ q > 3 ⇐ q =
m−1

2
+

√
(m−1)2 + 8(m−2)

2
≥ m−1

2
+

m−1

2
≥ 4.

Figure 5.2.4 shows that it is the last characteristic vectors.
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Figure 5.2.4: 3rd iteration of Example II.

The behavior of Φ is

0 7→ 1 · 22 · 3 · 4m−2 · 5m−3 · 6 · 7,
1 7→ 1 · 2 · 3 · 4m−3 · 5m−3,

2 7→ 2 · 3 · 42 · 6,
3 7→ 2 · 4m−3 · 5m−3 · 6 · 8,
4 7→ 2,

5 7→ 22 · 3 · 4m−2 · 5m−3 · 6 · 82,
6 7→ 2 · 3 · 4m−3 · 5m−3 · 8,
7 7→ 2 · 4m−3 · 5m−3 · 6 · 7,
8 7→ 4m−4 · 5m−3,

where for instance the expression “2 7→ 2 · 3 · 42 · 6” means that an n-th basic net
interval of type S2 produces five (n + 1)-th basic net intervals, two of type S4 and
three of types S2, S3, S6 respectively.

We can study the properties of Φ like the previous example. This time we just
remark that

Ycore = {a, b} =

{
q − 1− a

q
,
q2 − 1− a

q2

}
,

and as m → ∞, we have A → −2:

lim
m→∞

(m− 1)−
√
m2 + 6m− 15

2
= lim

m→∞

(m− 1)2 − (m2 + 6m− 15)

2[(m− 1) +
√
m2 + 6m− 15]

= −2,

q → m, and a, b → 1.
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5.3 Example III
Let m ≥ 6 be an even integer and a ∈ R. Consider the situation{

∂i = i if i ∈ [0, (m− 4)/2]

∂i = q − 1−m+ i if i ∈ [(m+ 4)/2, m]

and

∂(m−4)/2 · · · ∂1 ∂(m−2)/2 ∂m ∂m/2 ∂0 ∂(m+2)/2 ∂m−1 · · · ∂(m+4)/2

m− 4

2
· · · 1 a q−1

q−1

2
0 q − 1− a q − 2 · · · q−1− m− 4

2

.

We assume that q has a real algebraic conjugate A > 1, that P(A) has code⟨
m− 4

2
, · · · , m− 2

2
, · · · ,m, · · · , m

2
, · · · , 0, · · · , m+ 2

2
, · · · , m+ 4

2

⟩
,

and that

(5.3)



σA(

[
m− 2

2
;
m− 4

2

]
) =

(A− 1)− m−4
2

A

σA(

[
m

2
;
m− 2

2

]
) = σA(

[
m+ 2

2
;
m

2

]
) =

(A− 1)− m−4
2

A

σA(

[
m+ 4

2
;
m+ 2

2

]
) =

(A− 1)− m−4
2

A
.

Adding the equations, we have

A−m+ 3 = 4 ·
A− 1− m−4

2

A
⇒ A2 −mA+ 3A = 4A− 2m+ 4

⇒ A2 − (m+ 1)A+ 2m− 4 = 0,

whence

q, A =
(m+ 1)±

√
(m+ 1)2 − 4(2m− 4)

2
=

(m+ 1)±
√
m2 − 6m+ 17

2
.

As m ≥ 6, we have (m + 1)2 ≥ (m + 1)2 − 4(2m − 4) > 0, so both q and A are
positive real numbers. We have A > 1 because

(m+ 1)−
√
m2 − 6m+ 17

2
> 1 ⇐ (m− 1)2 > (

√
m2 − 6m+ 17)2

⇐ 4m− 16 > 0.

A fortiori q > A > 1. Note that q /∈ N, for otherwise there exists N ∈ N such that
N2 = m2 − 6m+ 17 = (m− 3)2 + 8, whence{

N − (m− 3) = 1
N + (m− 3) = 8

or
{

N − (m− 3) = 2
N + (m− 3) = 4.
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The former gives 2N = 9, while the latter gives N = 3 and m = 4. Both are
contradictions. From the quadratic equation, we have q(q − (m + 1)) = 4 − 2m,

whence q−1 =
q − (m+ 1)

4− 2m
. By (5.3), we have

a =
m− 4

2
+

q − 1− m−4
2

q
=

m− 2

2
+

q − (m+ 1)

4
=

q

4
+

m− 5

4
,

so
∂(m+2)/2 = q − 1− a =

3q

4
− m− 1

4
.

Since
(q − 1)− m− 4

2
= 1.5 +

√
m2 − 6m+ 17

2
> 0,

we see from (5.3) that Φ = {ρx+ ∂iρ}mi=0 is of the required form.
We verify that Φ satisfies the FTC. Figure 5.3.1 illustrates the 1st iteration. We

Figure 5.3.1: 1st iteration of Example III.

see that the 1st basic net intervals give rise to the following characteristic vectors:

S1 ⟨1, [0] , i⟩ (i = 1, . . . ,m− 4)

S2

⟨
q −m+ 3

4
, [0] , 1

⟩
S3

⟨
−q +m+ 1

4
,

[
0,

q −m+ 3

4

]
, i

⟩
(i = 1, 2, 3, 4)

S4

⟨
q −m+ 1

2
,

[
−q +m+ 1

4

]
, i

⟩
(i = 1, 2, 3)

S5

⟨
q −m+ 3

4
,

[
−q +m+ 1

4

]
, 1

⟩
S4 is not degenerate because its first component is positive:

q −m+ 1

2
=

1

2

√
m2 − 6m+ 17−m+ 3

2
=

√
m2 − 6m+ 17−

√
m2 − 6m+ 9

4
> 0.
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Figure 5.3.2: 2nd iteration of Example III. (part one)

Figure 5.3.3: 2nd iteration of Example III. (part two)

Figure 5.3.2 and 5.3.3 illustrate the 2nd iteration. They reveal that all characteristic
vectors have already appeared among the 1st basic net intervals. The behavior of Φ
is

1 7→ 1m−4 · 2 · 34 · 43 · 5,
2 7→ 1(m−4)/2 · 2 · 33 · 43,
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3 7→ 1(m−6)/2 · 2 · 32 · 5,
4 7→ 32 · 43,
5 7→ 1(m−4)/2 · 33 · 43 · 5,

where for instance the expression “4 7→ 32 ·43” means that an n-th basic net interval
of type S4 produces five (n + 1)-th basic net intervals, two of type S3 and three of
type S4.

We can study the properties of Φ like Example I. This time we just remark that

Ycore =

{
1,

q −m+ 3

4

}
,

and A tends to 2 as m → ∞:

lim
m→∞

(m+ 1)−
√
m2 − 6m+ 17

2
= lim

m→∞

(m+ 1)2 − (m2 − 6m+ 17)

2[(m+ 1) +
√
m2 − 6m+ 17]

= 2.

5.4 Example IV
Let a ∈ R and consider Φ = {ρx+ ∂iρ}4i=0, where

∂0 ∂1 ∂2 ∂3 ∂4
0 a (q − 1)/2 q − 1− a q − 1

.

Solving A, τ := σA(a) from

(5.4)
{

τ = (A2 − 1− τ)/A2

(A− 1)/2− τ = (A5 − 1− τ)/A5,

we get τ = (A2−1)/(A2+1) and f(A) = 0, where f(x) := x5−4x4−3x3−4x2−4x−4.
By computer, the roots of f(x) are

4.8344222, 0.2850073± 0.9767886i, − 0.7022184± 0.5532115i,

and |A| = 1.0175191 > 1 for A := 0.2850073 + 0.9767886i. We have the IFS

∂0 ∂1 ∂2 ∂3 ∂4

0
q2 − 1

q2 + 1

q − 1

2
q − 1− q2 − 1

q2 + 1
q − 1

0 −0.5q3 + 2q2 + 2q + 1 0.5q − 0.5 0.5q3 − 2q2 − q − 2 q − 1

0 0.9179374 1.9172111 2.9164848 3.8344222

.

Hence Φ is of the required form. We verify that it satisfies the FTC. The first
characteristic vector is:

R0 ⟨1, [0] , 1⟩

Figure 5.4.1 illustrates the 1st iteration. The new characteristic vectors are (we omit
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Figure 5.4.1: 1st iteration of Example IV.

the 3rd components for brevity):

1st component 2nd component

S1

−0.5q3 + 2q2 + 2q + 1

= 0.9179374
[0]

S2

0.5q3 − 2q2 − 2q

= 0.0820626

[0,−0.5q3 + 2q2 + 2q + 1]

= [0, 0.9179374]

S3

0.5q − 1.5

= 0.9172111

[0.5q3 − 2q2 − 2q]

= [0.0820626]

S4

−0.5q3 + 2q2 + 1.5q + 2.5

= 0.0007263

[0, 0.5q3 − 2q2 − 1.5q − 1.5]

= [0, 0.9992737]

S5

q3 − 4q2 − 3q − 4

= 0.9985474

[−0.5q3 + 2q2 + 1.5q + 2.5]

= [0.0007263]

S6

0.5q − 1.5

= 0.9172111

[−0.5q3 + 2q2 + 1.5q + 2.5]

= [0.0007263]

S7

−0.5q3 + 2q2 + 2q + 1

= 0.9179374

[0.5q3 − 2q2 − 2q]

= [0.0820626]

Figure 5.4.2 and 5.4.3 illustrate the 2nd iteration. The new characteristic vectors

Figure 5.4.2: 2nd iteration of Example IV. (part one)
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Figure 5.4.3: 2nd iteration of Example IV. (part two)

are:

1st component 2nd component

T8

−0.5q4 + 1.5q3 + 4q2 + 2q + 1

= 0.5212121

[0.5q3 − 2q2 − 2q]

= [0.0820626]

T9

0.5q4 − 2q3 − 2q2

= 0.3967253

[0,−0.5q4 + 2q3 + 2q2 + 1]

= [0, 0.6032747]

T10

−0.5q4 + 1.5q3 + 4q2 + 2q + 1

= 0.5212121

[0.5q4 − 2q3 − 2q2]

= [0.3967253]

T11

0.5q4 − 2.5q3 + 0.5q2 − 0.5q + 1

= 0.9144262

[0.5q3 − 2q2 − 2q]

= [0.0820626]

T12

−0.5q4 + 2q3 + 1.5q2 + 2.5q

= 0.0035112

[0, 0.5q4 − 2q3 − 1.5q2 − 2.5q + 1]

= [0, 0.9964888]

T13

0.5q4 − 2.5q3 + 0.5q2 − 0.5q + 1

= 0.9144262

[−0.5q4 + 2q3 + 1.5q2 + 2.5q]

= [0.0035112]

Figure 5.4.4 and 5.4.5 show the 3rd iteration. It gives rise to:

1st component 2nd component

U14

−0.5q3 + 1.5q2 + 4q + 3

= 0.9009628

[0.5q3 − 2q2 − 2q]

= [0.0820626]

U15

0.5q2 − 2q − 2

= 0.0169746

[0,−0.5q2 + 2q + 3]

= [0, 0.9830254]

U16

−0.5q3 + 1.5q2 + 4q + 3

= 0.9009628

[0.5q2 − 2q − 2]

= [0.0169746]

The 4th iteration is illustrated in Figure 5.4.6. There is only one new characteristic
vector:

1st component 2nd component

V17

−q3 + 4q2 + 4q + 1

= 0.8358748

[0.5q3 − 2q2 − 2q]

= [0.0820626]
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Figure 5.4.4: 3rd iteration of Example IV. (part one)

Figure 5.4.5: 3rd iteration of Example IV. (part two)

Figure 5.4.6: 4th iteration of Example IV.

As Figure 5.4.7 demonstrates, this is the last characteristic vector.
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Figure 5.4.7: 5th iteration of Example IV.

As a result, the associated matrix is

R0 S1 S2 S3 S4 S5 S6 S7 T8 T9 T10 T11 T12 T13 U14 U15 U16 V17

R0 0 1 11 1 11 1 1 1 0 0 0 0 0 0 0 0 0 0
S1 0 1 11 1 11 1 1 0 1 0 0 0 0 0 0 0 0 0
S2 0 0 00 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 00 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0
S3 0 0 11 1 11 1 1 0 0 0 1 1 0 0 0 0 0 0
S4 0 0 00 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 00 0 00 0 0 0 0 0 0 0 1 0 0 0 0 0
S5 0 0 11 1 11 1 1 0 0 0 0 1 0 1 0 0 0 0
S6 0 0 11 1 11 1 1 0 1 0 0 0 0 1 0 0 0 0
S7 0 0 11 1 11 1 1 1 0 0 1 0 0 0 0 0 0 0
T8 0 0 10 1 10 1 0 0 0 0 1 0 0 0 0 0 0 0
T9 0 0 10 1 11 0 1 0 0 0 0 0 0 0 0 0 0 0
T10 0 0 10 0 10 1 1 0 1 0 0 0 0 0 0 0 0 0
T11 0 0 11 1 11 1 1 0 0 0 1 0 0 0 1 0 0 0
T12 0 0 00 0 00 0 0 0 0 0 0 0 0 0 0 1 0 0
T13 0 0 11 1 11 1 1 0 1 0 0 0 0 0 0 0 1 0
U14 0 0 11 1 11 1 1 0 0 0 1 0 0 0 0 0 0 1
U15 0 0 10 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0
U16 0 0 11 1 11 1 1 0 1 0 0 0 0 0 0 0 0 1
V17 0 0 11 1 11 1 1 0 1 0 1 0 0 0 0 0 0 0



.

Reading from the figures, we find that

Ycore = { ℓ1, ℓ2 + ℓ3, ℓ4 + ℓ5, ℓ4 + ℓ6,

ℓ2 + ℓ8, ℓ9 + ℓ10, ℓ2 + ℓ11, ℓ12 + ℓ13,

ℓ2 + ℓ14, ℓ15 + ℓ16, ℓ2 + ℓ17 } ,

where for instance ℓ3 means the first component of S3, ℓ17 means the first component
of V17, etc. We proceed to simplify the R.H.S.. From (5.4) and a = −0.5q3 + 2q2 +
2q + 1, we have

q − 1

2
+ 0.5q3 − 2q2 − 2q − 1 =

q5 − 1− a

q5
.
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This and q5 − 4q4 − 3q3 − 4q2 − 4q − 4 = 0 give{
0.5q8 − 2q7 − 1.5q6 − 2.5q5 + 1 + a = 0;
−0.5q5 + 2q4 + 2q3 + 1 + a = 0.

From these, (5.4), and the above tables of the characteristic vectors, we find that
indeed

Ycore =

{
qi − 1− a

qi
: i = 1, 2, 3, 4, 5

}
,

because

ℓ1 = −0.5q3 + 2q2 + 2q + 1

= ℓ4 + ℓ6 = ℓ9 + ℓ10 = ℓ12 + ℓ13 = ℓ15 + ℓ16 = ℓ2 + ℓ17,

ℓ1 = a =
q2 − 1− a

q2
,

ℓ2 + ℓ3 = 0.5q3 − 2q2 − 1.5q − 1.5

= ℓ4 + ℓ5,

ℓ2 + ℓ3 =
q − 1

2
− a =

q5 − 1− a

q5
,

ℓ2 + ℓ8 = −0.5q4 + 2q3 + 2q2 + 1 =
q − 1− a

q
,

ℓ2 + ℓ11 = 0.5q4 − 2q3 − 1.5q2 − 2.5q + 1 =
q4 − 1− a

q4
,

ℓ2 + ℓ14 = −0.5q2 + 2q + 3 =
q3 − 1− a

q3
.

Finally, we record the codes of Lj(A, 1) (0 ≤ j ≤ 5):

j σA(∂1)/A
j σA(∂2)/A

j σA(∂3)/A
j σA(∂4)/A

j Code of Lj

0 0.220 + 3.414i −0.357 + 0.488i −0.935− 2.437i −0.714 + 0.976i ⟨10243⟩

1 3.281 + 0.731i 0.362 + 0.471i −2.557 + 0.211i 0.724 + 0.943i ⟨14203⟩

2 1.593− 2.894i 0.544− 0.212i −0.504 + 2.470i 1.089− 0.424i ⟨14203⟩

3 −2.292− 2.300i −0.050− 0.572i 2.192 + 1.155i −0.100− 1.144i ⟨30241⟩

4 −2.801 + 1.529i −0.553− 0.110i 1.693− 1.750i −1.107− 0.220i ⟨30241⟩

5 0.671 + 3.063i −0.256 + 0.492i −1.184− 2.079i −0.513 + 0.984i ⟨10243⟩

5.5 Example V
Let a ∈ R and consider Φ = {ρx+ ∂iρ}4i=0, where

∂0 ∂1 ∂2 ∂3 ∂4
0 a (q − 1)/2 q − 1− a q − 1

.
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Solving A, τ := σA(a) from

(5.5)
{

τ = (A4 − 1− τ)/A4

(A− 1)/2− τ = (A3 − 1− τ)/A3,

we get τ = (A4 − 1)/(A4 +1) and f(A) = 0, where f(x) := x4 − 4x3 − 4x2 − 4x+1.
By computer, the roots of f(x) are

4.9606929, − 0.5811388± 0.8138044i, 0.2015847.

Since f(1/x) = f(x)/x4, we see that the non-real roots A,A of f(x) satisfy |A| = 1.
We have the IFS

∂0 ∂1 ∂2 ∂3 ∂4

0
q4 − 1

q4 + 1

q − 1

2
q − 1− q4 − 1

q4 + 1
q − 1

0 0.5q3 − 2.5q2 + 0.5q − 1 0.5q − 0.5 −0.5q3 + 2.5q2 + 0.5q q − 1

0 0.9967028 1.9803465 2.9639901 3.9606929

.

Hence Φ is of the required form. We verify that it satisfies the FTC. The first
characteristic vector is:

R0 ⟨1, [0] , 1⟩

Figure 5.5.1 illustrates the 1st iteration. The new characteristic vectors are (we omit

Figure 5.5.1: 1st iteration of Example V.
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the 3rd components for brevity):

1st component 2nd component

S1

0.5q3 − 2.5q2 + 0.5q − 1

= 0.9967028
[0]

S2

−0.5q3 + 2.5q2 − 0.5q + 2

= 0.0032972

[0, 0.5q3 − 2.5q2 + 0.5q − 1]

= [0, 0.9967028]

S3

0.5q − 1.5

= 0.9803465

[−0.5q3 + 2.5q2 − 0.5q + 2]

= [0.0032972]

S4

0.5q3 − 2.5q2 + 0.5

= 0.0163564

[0,−0.5q3 + 2.5q2 + 0.5]

= [0, 0.9836436]

S5

−q3 + 5q2

= 0.9672873

[0.5q3 − 2.5q2 + 0.5]

= [0.0163564]

S6

0.5q − 1.5

= 0.9803465

[0.5q3 − 2.5q2 + 0.5]

= [0.0163564]

S7

0.5q3 − 2.5q2 + 0.5q − 1

= 0.9967028

[−0.5q3 + 2.5q2 − 0.5q + 2]

= [0.0032972]

Figure 5.5.2 and 5.5.3 illustrate the 2nd iteration. The new characteristic vectors

Figure 5.5.2: 2nd iteration of Example V. (part one)

are:
1st component 2nd component

T8

q3 − 4.5q2 − 2q − 0.5

= 0.915564

[−0.5q3 + 2.5q2 − 0.5q + 2]

= [0.0032972]

T9

−0.5q3 + 2q2 + 2.5q − 0.5

= 0.0811388

[0, 0.5q3 − 2q2 − 2.5q + 1.5]

= [0, 0.9188612]

T10

q3 − 4.5q2 − 2q − 0.5

= 0.915564

[−0.5q3 + 2q2 + 2.5q − 0.5]

= [0.0811388]

Figure 5.5.4 shows the 3rd iteration. It gives rise to:
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Figure 5.5.3: 2nd iteration of Example V. (part two)

Figure 5.5.4: 3rd iteration of Example V.

1st component 2nd component

U11

0.5q3 − 3q2 + 3q − 1.5

= 0.594198

[−0.5q3 + 2.5q2 − 0.5q + 2]

= [0.0032972]

U12

0.5q2 − 2.5q + 0.5

= 0.4025048

[0,−0.5q2 + 2.5q + 0.5]

= [0, 0.5974952]

U13

0.5q3 − 3q2 + 3q − 1.5

= 0.594198

[0.5q2 − 2.5q + 0.5]

= [0.4025048]

Figure 5.5.5 demonstrates that they are the last characteristic vectors.
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Figure 5.5.5: 4th iteration of Example V.

As a result, the associated matrix is

R0 S1 S2 S3 S4 S5 S6 S7 T8 T9 T10 U11 U12 U13

R0 0 1 11 10 11 1 10 1 0 0 0 0 0 0
S1 0 1 11 11 11 1 10 0 0 0 0 0 0 0
S2 0 0 00 00 10 0 00 0 0 0 0 0 0 0

0 0 00 00 10 0 00 0 0 0 0 0 0 0
S3 0 0 11 10 11 1 11 0 1 0 0 0 0 0

0 0 11 10 11 1 11 0 1 0 0 0 0 0
S4 0 0 00 00 00 0 00 0 0 1 0 0 0 0

0 0 00 00 00 0 00 0 0 1 0 0 0 0
S5 0 0 11 10 11 1 10 0 1 0 1 0 0 0
S6 0 0 11 11 11 1 10 0 0 0 1 0 0 0

0 0 11 11 11 1 10 0 0 0 1 0 0 0
S7 0 0 11 10 11 1 11 1 0 0 0 0 0 0
T8 0 0 11 10 11 1 11 0 0 0 0 1 0 0
T9 0 0 00 00 00 0 00 0 0 0 0 0 1 0
T10 0 0 11 11 11 1 10 0 0 0 0 0 0 1
U11 0 0 10 10 10 1 10 0 0 0 0 0 0 0
U12 0 0 10 10 11 0 10 0 0 0 0 0 0 0
U13 0 0 10 10 10 1 10 0 0 0 0 0 0 0



.

Reading from the figures, we find that

Ycore = { ℓ1, ℓ2 + ℓ3, ℓ4 + ℓ5, ℓ4 + ℓ6,

ℓ2 + ℓ8, ℓ9 + ℓ10,

ℓ2 + ℓ11, ℓ12 + ℓ13 } ,

where for instance ℓ3 means the first component of S3, ℓ8 means the first component
of T8, etc. We proceed to simplify the R.H.S.. From (5.5) and a = 0.5q3 − 2.5q2 +
0.5q − 1, we have

q − 1

2
− 0.5q3 + 2.5q2 − 0.5q + 1 =

q3 − 1− a

q3
.
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This and q4 − 4q3 − 4q2 − 4q + 1 = 0 give
−0.5q6 + 2.5q5 − 0.5q3 + 1 + a = 0;
0.5q5 − 2q4 − 2.5q3 + 0.5q2 + 1 + a = 0;
−0.5q3 + 2.5q2 − 0.5q + 1 + a = 0.

From these, (5.5), and the above tables of characteristic vectors, we find that indeed

Ycore =

{
qi − 1− a

qi
: i = 1, 2, 3, 4

}
,

because

ℓ1 = 0.5q3 − 2.5q2 + 0.5q − 1

= ℓ4 + ℓ6 = ℓ9 + ℓ10 = ℓ12 + ℓ13,

ℓ1 = a =
q4 − 1− a

q4
,

ℓ2 + ℓ3 = −0.5q3 + 2.5q2 + 0.5

= ℓ4 + ℓ5,

ℓ2 + ℓ3 =
q − 1

2
− a =

q3 − 1− a

q3
,

ℓ2 + ℓ8 = 0.5q3 − 2q2 − 2.5q + 1.5 =
q2 − 1− a

q2
,

ℓ2 + ℓ11 = −0.5q2 + 2.5q + 0.5 =
q − 1− a

q
.

Finally, taking A := −0.5811388 + 0.8138044i, we record the codes of Lj(A, 1)
(0 ≤ j ≤ 4):

j σA(∂1)/A
j σA(∂2)/A

j σA(∂3)/A
j σA(∂4)/A

j Code of Lj

0 0.000 + 2.914i −0.790 + 0.406i −1.581− 2.100i −1.581 + 0.813i ⟨10243⟩

1 2.371− 1.693i 0.790 + 0.406i −0.790 + 2.507i 1.581 + 0.813i ⟨14203⟩

2 −2.756− 0.945i −0.128− 0.879i 2.5− 0.813i −0.256− 1.759i ⟨30241⟩

3 0.832 + 2.792i −0.641 + 0.615i −2.115− 1.561i −1.282 + 1.231i ⟨10243⟩

4 1.789− 2.300i 0.873 + 0.164i −0.041 + 2.628i 1.747 + 0.328i ⟨14203⟩

5.6 Conclusion
To conclude this chapter, let us first describe how we search for an example for the
case m = 4. We only present heuristic argument which reflects that we did not know
whether there existed such an example.

We think that if such an example exists, then we can find one having the sym-
metric form

∂0 ∂1 ∂2 ∂3 ∂4
0 a (q − 1)/2 q − 1− a q − 1

,
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because this form should simplify the overlapping behavior of the IFS. It also helps
to reduce the number of unknowns: there are only two unknowns (a, q) instead of
four (∂1, ∂2, ∂3, q) in this situation. Observation 2.1 (p.11) is a motivation too.

If Φ is of this form, then ∂4 = 2∂2. Accordingly, Lℓ(A,w) always has code
⟨· · · 4 · · · 2 · · · 0 · · ·⟩ or ⟨· · · 0 · · · 2 · · · 4 · · ·⟩. Reviewing the strategy used in Chapter 4
for the case m = 3, we have the following ideas:

1. For a 4-tuple Φ, the codes making the situation intricate were ⟨1302⟩ and
⟨1032⟩, and the “compulsory digits” (defined informally in the proof of p.40
Lemma 4.8) were q − 1 − a and q − 1 − b. This time, the special codes are
⟨10243⟩ and ⟨14203⟩, and the “compulsory digit” is q − 1− a.

2. The proof of Lemma 4.8 (p.40) works, so that |A| < |1 + σA(a)|.

3. The proof of Lemma 4.9 (p.41) works, so that∣∣∣∣σA(a) + 1

A

∣∣∣∣ ≥ |σA(y)− 1|

for all y ∈ Ycore.

4. The proof of Corollary 4.10(ii) (p.42) works, so that ℜ (σA(a)) ≥ 0.

Letting τ := σA(a), we are led to consider the system of equations

(5.6)
{

τ = (Ah − 1− τ)/Ah

(A− 1)/2− τ = (Ak − 1− τ)/Ak,

where (h, k) ∈ N2, because

1. The first equation gives σA(a) = (Ah−1)/(Ah+1), which fulfills ℜ (σA(a)) ≥ 0
when |A| ≥ 1.

2. The previous strategy suggests that given y ∈ Y ∩(0, 1) such that ℜ (σA(y)) <
0, its expansion by our lazy algorithm is forced to use the “compulsory digit”
and is of the following form:

y =
k−1∑
i=1

q − 1

qi
+

q − 1− a

qk
+ · · · .

If we assume y = [2; 1] and q − 1− a

qk
is the last non-zero term in the expansion,

then we get the second equation of (5.6).

3. Solving (5.6), we get an equation f(A) = 0, where f(x) ∈ Z[x] is a polynomial
whose degree increases when h, k increase. When the degree of f(x) increases,
hopefully we can have many algebraic conjugates of q, among which some
satisfies |A| ≥ 1.

4. By experiment, or by our assumption that ℜ (σA(a)) ≥ 0 > ℜ (σA([2; 1])), it
appears that the case h = k is not productive. Having two parameters (h, k)
instead one (h = k) increases the flexibility of our model.
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We use computer to solve a constrained version of (5.6) and find the promising
pairs (h, k) = (2, 5) and (4, 3). Before we proceed to verify the FTC rigorously like
the previous section, we also use computer to calculate the characteristic vectors and
estimate whether it is likely or not that the FTC holds. Sample codes and output
of our computer program are provided in Appendix B and C.

Fortunately, the aforementioned methodology works and we find an example
indeed.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We end by giving miscellaneous results inspired by the examples. To begin with,
we observe that for each of them, we have #Ycore = deg q, the degree of the algebraic
number q. As the following proposition shows, it suggests that they are, in a certain
sense, the simplest overlapping IFS on R having no hole in their attractors.

Proposition 5.1 (Lower bound of #Ycore)
If Φ satisfies the FTC, then #Ycore ≥ deg q.

We do some preparation before giving a proof. As Ycore is a finite set when Φ satisfies
the FTC, we can write Ycore

def= {y1, . . . , yH} and define y
def=(y1, . . . , yH) accordingly.

Let

X
def=
{

n−1∑
i=0

qidi : di ∈ D(q), n ≥ 1

}
=

∞∪
n=1

qnFn,

where Fn is from p.16 Lemma 2.7. In light of that lemma and noting that qnFn ⊆
qn+1Fn+1 for all n ≥ 1, we have the following result:

(5.7)
If Φ satisfies the FTC, then for any s, t ∈ X with s < t, there exist
a positive integer ℓ ≥ 1 and {xi}ℓi=0 ⊆ X such that s = x0 < x1 <
· · · < xℓ = t, where xi − xi−1 ∈ Ycore for all i ∈ [1, ℓ].

Proof of Proposition 5.1
For each y ∈ Ycore ⊆ Y = X −X, there exist x1, x2 ∈ X such that y = x2 − x1. As
qX ⊆ X and Φ satisfies the FTC, using (5.7) with s := qx1, t := qx2, there exist
non-negative integers N1, . . . , NH such that

qy = N1y1 + · · ·NHyH .

Therefore, there exists a H × H non-negative matrix P with integer entries such
that Py = qy. Consequently, q is an eigenvalue of P , and deg q is not greater than
the degree of the characteristic polynomial of P , which is equal to H = #Ycore.

Q.E.D.

We use our examples to illustrate the idea. Recall that in Example IV, Ycore =
{yi}5i=1, where yi := (qi− 1− a)/qi and a := (q2− 1)/(q2+1). Using the calculation
of Ycore in the last part of that example, and reading from p.64 Figure 5.4.2, we have

qy5 = q(ℓ2 + ℓ3) = (ℓ9 + ℓ10) + (ℓ2 + ℓ3) + (ℓ4 + ℓ5) + (ℓ4 + ℓ6) + (ℓ2 + ℓ11)

= 2y2 + y4 + 2y5.
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We obtain the equations for qyi (1 ≤ i ≤ 4) in the same way. Altogether, we have
0 1 0 0 2
1 2 0 0 2
0 3 0 0 2
0 2 1 0 2
0 2 0 1 2



y1
y2
y3
y4
y5

 = q


y1
y2
y3
y4
y5

 .

Similarly, in the case of Example I, we have(
3 (m− 3)/2
3 m− 2

)(
y1
1

)
= q

(
y1
1

)
,

where y1 := (q −m+ 2)/3.
Next, we observe that many of our examples not only satisfy the FTC but also

the following condition:

(5.8) Given any y ∈ Ycore, we have |qy − (q − 1)| ∈ Ycore.

Note that if qy = N1y1+· · ·NHyH , q−1 = L1y1+· · ·+LHyH , and |qy − (q − 1)| = yi,
then letting

u := (u1 · · · uH) :=

{
(L1 · · · LH) if qy > q − 1

(N1 · · · (Ni+1) · · · NH) otherwise,

we have u · y = q − 1 and

qy =

{
u · y + yi if qy > q − 1

u · y − yi otherwise.

Therefore, under condition (5.8), we can require that the matrix P in the preceding
proof is of the form

P =

u1,1 · · · u1,H
... ... ...

uH,1 · · · uH,H

+ S,

where ui,j are non-negative integers such that

(ui,1 · · · ui,H) · y = q − 1

for all i ∈ [1, H], and that the matrix S satisfies the following property:

(5.9) Each row of S has exactly one non-zero entry which is eqaul to ±1.
Consequently, for each n ∈ N the same holds for the matrix Sn.

For instance, in the case of Example IV, we have q − 1 = 2y2 + 2y5 and

P =


0 1 0 0 2
1 2 0 0 2
0 3 0 0 2
0 2 1 0 2
0 2 0 1 2

 =


0 2 0 0 2
0 2 0 0 2
0 2 0 0 2
0 2 0 0 2
0 2 0 0 2

+


0 −1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .
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Similarly, in the case of Example I with m = 5 and y1 = q/3 − 1, we have q − 1 =
3 · y1 + 2 · 1 and

P =

(
3 1
3 3

)
=

(
3 2
3 2

)
+

(
0 −1
0 1

)
.

We have the following proposition.

Proposition 5.2 (Expansion for Ycore)
If Φ satisfies the FTC and condition (5.8), then for all y ∈ Ycore, there exists
{si}∞i=1 ⊆ {±(q − 1)} such that

(5.10) y =
∞∑
1

si
qi
,

where s1 = q− 1 and {si}∞i=1 is eventually periodic. Moreover, we can have uniform
pre-period and period.

Proof
Let v0 be the H × 1 vector with all entries equal to q − 1. The above discussion
gives qy = Py = v0 + Sy, that is, y = q−1v0 + (q−1S)y. As a result,

y = q−1v0 + (q−1S)[q−1v0 + (q−1S)y] = q−1v0 + q−2Sv0 + (q−1S)2y = · · · .

As a consequence of property (5.9), we have the convergent series

y =
∞∑
i=1

Si−1v0

qi
.

Moreover, since there are only finitely many H × H matrices satisfying property
(5.9), there exist i ̸= j such that Si = Sj. This implies that the expansion obtained
is eventually periodic. As y consists of all elements of Ycore, we have uniform pre-
period and period.

Q.E.D.

For instance, in the case of Example IV, we have S3 = S7 and
y1
y2
y3
y4
y5

 = (q − 1)


11̄1̄(111̄1̄)ω

111̄(1̄111̄)ω

111(1̄1̄11)ω

111(11̄1̄1)ω

111(111̄1̄)ω

 ,

where 1̄ := −1 and

c1c2c3(c4c5c6c7)
ω :=

c1
q
+
c2
q2
+
c3
q3
+

(
c4
q4

+
c5
q5

+
c6
q6

+
c7
q7

)(
1 +

1

q4
+

1

q8
+

1

q12
+ · · ·

)
.

Alternatively, since S3 = −S5, we also have e.g.

y1 =
q − 1

q
+

−(q − 1)

q2
+

−(q − 1)

q3
+

(
q − 1

q4
+

q − 1

q5

)(
1− 1

q2
+

1

q4
− 1

q6
+ · · ·

)
.
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We finish by giving two corollaries of the preceding proposition. Firstly, given
an algebraic conjugate A of q with |A| > 1, we can obtain a simple upper bound of
the set σA(Ycore) in terms of A. For, given y ∈ Ycore and expansion (5.10), by using
the FTC (p.11 Proposition 2.2) or by using periodicity to write the expansion as a
finite sum, we have

|σA(y)| =

∣∣∣∣∣
∞∑
1

σA(si)

Ai

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
1

±(A− 1)

Ai

∣∣∣∣∣ ≤
∞∑
1

|A− 1|
|A|i

=
|A− 1|
|A| − 1

.

This bound is sharp in the case of Example I and II with m = 5. In the former case,
we have q2 − 6q + 6 = 0, q = 3 +

√
3, A = 3−

√
3,

y =

(
q/3− 1

1

)
= (q − 1)

(
1(1̄)ω

1(1)ω

)
,

and |A− 1| /(|A| − 1) = 1 = y2. In the latter case, we have q2 − 4q − 6 = 0,
q = 2 +

√
10, A = 2−

√
10, and

y =

(
−2q + 11
(5q − 23)/3

)
= (q − 1)

(
1(1̄1)ω

1(11̄)ω

)
.

As 1(1̄1)ω matches the sign change of Ai, we have σA(y1) = |A− 1| /(|A| − 1).
The second corollary of Proposition 5.2 is that, since Ycore is the building block of

the set X (property (5.7)), we can represent the set (q−1)−1X in terms of expansions
in q in a structured way. We use Example IV to illustrate the idea. Table 5.1 lists
the elements of (q−1)−1X up to (q−1)−1(q2−1). In the table, the column of x−x↓

is obtained from Figure 5.4.2 and 5.4.3. “rep(x) = (n1, n2, n3, n4, n5)” means that
x =

∑5
i=1 niyi. In the last column, we take

z−1z0.z1z2z3(z4z5)
ϖ :=

3∑
i=−1

zi
qi

+

(
z4
q4

+
z5
q5

)(
1− 1

q2
+

1

q4
− 1

q6
+ · · ·

)
,

a := 10, b := 11, c := 12, etc, and let x̄ := −x for any x. For instance, we have
13.103030 = y1 + 6y2 + y4 + 6y5, and (q− 1)−113.103030 = 3.417211 has expansions

14

q
+

12

q2
+

0

q3
+

(
2

q4
+

12

q5

)(
1− 1

q2
+

1

q4
− 1

q6
+ · · ·

)
and

3 +
2

q
+

0

q2
+

0

q3
+

(
2

q4
+

0

q5

)(
1− 1

q2
+

1

q4
− 1

q6
+ · · ·

)
.

Multiple expansions are obtained through relations like .440(04)ϖ = 1.000(00)ϖ.
For instance, we have

4.437697 = .ig2(4e)ϖ = 3.642(42)ϖ = 4.202(42̄)ϖ.

We may compare these expansions to the decimal expansions of n/9, n ∈ N.
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No. x ∈ X x− x↓ rep(x) (q − 1)−1x
0 0 ∞ (0, 0, 0, 0, 0) 0 = .000(00)ϖ

1 0.917937 ℓ1 (0, 1, 0, 0, 0) 0.239393 = .111̄(1̄1)ϖ

2 1.917211 ℓ2 + ℓ3 (0, 1, 0, 0, 1) 0.500000 = .220(02)ϖ

3 2.916484 ℓ4 + ℓ5 (0, 1, 0, 0, 2) 0.760606 = .331(13)ϖ

4 3.834422 ℓ4 + ℓ6 (0, 2, 0, 0, 2) 1.000000 = .440(04)ϖ = 1.000(00)ϖ

5 4.437697 ℓ2 + ℓ8 (1, 2, 0, 0, 2) 1.157331 = .531̄(15)ϖ = 1.11̄1̄(11)ϖ

6 5.355634 ℓ9 + ℓ10 (1, 3, 0, 0, 2) 1.396725 = .642̄(06)ϖ = 1.202̄(02)ϖ

7 6.354908 ℓ2 + ℓ3 (1, 3, 0, 0, 3) 1.657331 = .751̄(17)ϖ = 1.311̄(13)ϖ

8 7.354181 ℓ4 + ℓ5 (1, 3, 0, 0, 4) 1.917937 = .860(28)ϖ = 1.420(24)ϖ

9 8.272119 ℓ4 + ℓ6 (1, 4, 0, 0, 4) 2.157331 = .971̄(19)ϖ = 2.11̄1̄(11)ϖ

10 9.268608 ℓ2 + ℓ11 (1, 4, 0, 1, 4) 2.417211 = .a80(28)ϖ = 2.200(20)ϖ

11 10.186545 ℓ12 + ℓ13 (1, 5, 0, 1, 4) 2.656605 = .b91̄(19)ϖ = 2.311̄(11)ϖ

12 11.185819 ℓ2 + ℓ3 (1, 5, 0, 1, 5) 2.917211 = .ca0(2a)ϖ = 2.420(22)ϖ

13 12.185093 ℓ4 + ℓ5 (1, 5, 0, 1, 6) 3.177817 = .db1(3b)ϖ = 2.531(33)ϖ

14 13.103030 ℓ4 + ℓ6 (1, 6, 0, 1, 6) 3.417211 = .ec0(2c)ϖ = 3.200(20)ϖ

15 14.099519 ℓ2 + ℓ11 (1, 6, 0, 2, 6) 3.677090 = .fd1(3b)ϖ = 3.311(31̄)ϖ

16 15.017456 ℓ12 + ℓ13 (1, 7, 0, 2, 6) 3.916484 = .ge0(2c)ϖ = 3.420(20)ϖ

17 16.016730 ℓ2 + ℓ3 (1, 7, 0, 2, 7) 4.177090 = .hf1(3d)ϖ = 3.531(31)ϖ

18 17.016004 ℓ4 + ℓ5 (1, 7, 0, 2, 8) 4.437697 = .ig2(4e)ϖ = 3.642(42)ϖ

19 17.933941 ℓ4 + ℓ6 (1, 8, 0, 2, 8) 4.677090 = .jh1(3f)ϖ = 4.311(31̄)ϖ

20 18.537216 ℓ2 + ℓ8 (2, 8, 0, 2, 8) 4.834422 = .kg0(4g)ϖ = 10.000(00)ϖ

21 19.455153 ℓ9 + ℓ10 (2, 9, 0, 2, 8) 5.073816 = .lh1̄(3h)ϖ = 10.111̄(1̄1)ϖ

22 20.454427 ℓ2 + ℓ3 (2, 9, 0, 2, 9) 5.334422 = .mi0(4i)ϖ = 10.220(02)ϖ

23 21.453701 ℓ4 + ℓ5 (2, 9, 0, 2, 10) 5.595028 = .nj1(5j)ϖ = 10.331(13)ϖ

24 22.371638 ℓ4 + ℓ6 (2, 10, 0, 2, 10) 5.834422 = .ok0(4k)ϖ = 11.000(00)ϖ

Table 5.1: Representing the set X and (q − 1)−1X of Example IV.



80 Chapter 5. Examples



Appendix A

Finite type condition, algebraic
numbers, and density

This appendix has two purposes. The first is to introduce terminology concerning
the FTC. This part is based on [20] and [21, section 6]. The second is to give a proof
of Theorem 1.1 (p.3) and Theorem 1.9 (p.5) respectively.

Recall that the IFS in consideration is {φi(x) = ρx+ bi}mi=0, where 0 = b0 < b1 <

· · · < bm = 1 − ρ and bi+1 − bi ≤ ρ for all i. Write A def= {0, . . . ,m} and let An be
the collection of all words j1 · · · jn of length n over A. Given J := j1 · · · jn ∈ An, we
write φJ := φj1 ◦ · · · ◦φjn . If n = 0, then φJ is just the identity function. Let Pn be
the collection of all end points given by the intervals φJ [0, 1] with J ∈ An. i.e.

Pn
def= {φJ(0) : J ∈ An} ∪ {φJ(1) : J ∈ An} .

Since φ0(0) = 0 and φm(1) = 1, we have Pn ⊆ Pn+1 for all n ≥ 0.
Let Fn

def=
{
[e(↓Pn), e] : e ∈ P×min

n

}
. Each element ∆ ∈ Fn is called an n-th basic

net interval. These intervals satisfy the following properties: (i)
∪

∆∈Fn
∆ = [0, 1]

for any n ≥ 0; (ii) for any ∆1,∆2 ∈ Fn, either ∆1 = ∆2 or int(∆1) ∩ int(∆2) = ∅;
(iii) for any ∆ ∈ Fn (n ≥ 1), there is a unique ∆̂ ∈ Fn−1 such that ∆̂ ⊇ ∆.

For each ∆ ∈ Fn, we define a positive number ℓn(∆), a vector Vn(∆), and a
positive integer rn(∆). Given ∆ =: [a, b] ∈ Fn, we define

ℓn(∆)
def= qn(b− a)

and
Vn(∆)

def=[a1, . . . , ak],

where a1 < · · · < ak are all elements of the set

{qn[a− φJ(0)] : J ∈ An, φJ [0, 1] ∩ (a, b) ̸= ∅} .

If n = 0, then we define rn(∆) = 1. Else if n ≥ 1, to define rn(∆), let ∆̂ be the
unique element of Fn−1 containing ∆. Order the intervals from the set{

Ξ ∈ Fn : Ξ ⊆ ∆̂, ℓn(Ξ) = ℓn(∆), Vn(Ξ) = Vn(∆)
}

by their left end points. Then rn(∆) is defined to be the rank of ∆ in this ordering.

81
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We call the triple
Cn(∆)

def=⟨ℓn(∆), Vn(∆), rn(∆)⟩

the characteristic vector of ∆, which encodes the length and neighborhood infor-
mation of ∆. Let

Ω
def= {Cn(∆) : n ≥ 0, ∆ ∈ Fn}

be the collection of all characteristic vectors. Given α = ⟨c1, c2, c3⟩ ∈ Ω, we write

ℓ(α)
def= c1, V (α)

def= c2, r(α)
def= c3.

If Φ satisfies the FTC, then we know from [21, Lemma 6.1] that Ω is a finite set.1
In this case, let Ω∗ denote the collection of all finite words over Ω. We define a
function ζ : Ω → Ω∗ as follows. Given α ∈ Ω, pick some n and ∆ ∈ Fn such that
α = Cn(∆). Let ∆1, . . . ,∆k (ordered by left end points increasingly) be all elements
in Fn+1 which are sub-intervals of ∆, and write αj := Cn+1(∆j). By [21, Lemma
6.1], the word α1 · · ·αk depends on α only and is independent of the choice of n and
∆. Therefore, we can define

ζ(α) := α1 · · ·αk.

Associated with ζ is a matrix M on Ω× Ω which is defined by

Mα,β :=

{
1 if β is a letter of ζ(α)
0 otherwise.

We have M ∈ Mat({0, 1}), where Mat(S) denotes the collection of all matrices (ai,j)
with ai,j ∈ S.

After the above preparation, we are now ready to prove Theorem 1.1 (p.3). The
proof is due to Feng (personal communication, 2018).

Proof of Theorem 1.1
Write Ω =: {α1, . . . , αw} and let u be the vector (l1, . . . , lw) := (ℓ(α1), . . . , ℓ(αw)).
Given α ∈ Ω, pick some n and ∆ ∈ Fn such that α = Cn(∆). As

ρnℓ(α) = length of ∆ =
∑

Ξ∈Fn+1, Ξ⊆∆

(length of Ξ) =
∑

β∈Ω, Mα,β=1

ρn+1ℓ(β),

we have

qu = q

 l1
...
lw

 = M

 l1
...
lw

 = Mu.

Note that M ∈ Mat(Z), M ≥ 0, and u > 0. Accordingly, we shall prove the result
by making use of the theory of non-negative matrices (c.f. [51] for example).

1The converse also holds. One way to see this is that if Ω is a finite set, then the set
{ℓn(∆) : n ≥ 0, ∆ ∈ Fn} = {ℓ(α) : α ∈ Ω} is bounded away from zero, so 0 is not an accumu-
lation point of Y , and so Φ satisfies the FTC by [22, Theorem 1.11 and Lemma 2.1].



83

By rearranging M into canonical form of irreducible components, we can write
the above equation as

(A.1) M̃ ũ =


T1 0 0 · · · 0
P2,1 T2 0 · · · 0
P3,1 P3,2 T3 · · · 0

... ... ... ... ...
PR,1 PR,2 PR,3 · · · TR


 ũ1

...
ũR

 = q

 ũ1
...
ũR

 = qũ,

where each Ti is an irreducible matrix. From this equation we have T1ũ1 = qũ1.
Since T1 ∈ Mat(Z) and ũ1 ̸= 0, q is an algebraic integer and all of its algebraic
conjugates are eigenvalues of T1. Moreover, as T1 ≥ 0 is irreducible, it follows that
|A| ≤ q for all algebraic conjugate A of q (c.f. [51, Theorem 1.5 and 1.6]). It remains
to show that bi ∈ Q(q) = Q[q] for all i.

As T1 ≥ 0 is irreducible, the solution space {x : T1x = qx} has dimension
one. Hence, noting that T1 ∈ Mat(Z), from Gaussian elimination there exists
x1 ∈ Mat(Q(q)) such that T1x1 = qx1 and ũ1 = tx1 for some t ∈ R. Since ũ1 > 0,
we can take x1 > 0 and t > 0.

By [21, Lemma 6.4], Ω has exactly one essential class. Therefore, P2,1 ≥ 0, ̸= 0.
Now (A.1) gives (qI − T2)ũ2 = P2,1ũ1 = tP2,1x1 =: y2, where y2 ≥ 0, ̸= 0. As
a result, q is strictly greater than the Perron-Frobenius eigenvalue of T2 (c.f. [51,
Theorem 2.1]), whence q is not an eigenvalue of T2. This implies ũ2 = t(qI −
T2)

−1P2,1x1 =: tx2. We have x2 ∈ Mat(Q(q)). As ũ2 > 0 and t > 0, the relation
ũ2 = tx2 gives x2 > 0.

Again, as Ω has exactly one essential class, we have (P3,1 P3,2) ≥ 0, ̸= 0. (A.1)
gives (qI − T3)ũ3 = P3,1ũ1 + P3,2ũ2 = t(P3,1x1 + P3,2x2) =: y3, where y3 ≥ 0, ̸= 0.
The same argument as above gives ũ3 = t(qI − T3)

−1(P3,1x1 +P3,2x2) =: tx3, where
x3 ∈ Mat(Q(q)) and x3 > 0. Continuing this way until the last row block of M̃ , we
get
(A.2) ũi = txi, xi ∈ Mat(Q(q)), xi > 0 (1 ≤ i ≤ R).

Observe that α := C0([0, 1]) ∈ Ω satisfies ℓ(α) = 1. Therefore, there exists
1 ≤ i ≤ R such that ũi has an entry of value 1, whence (A.2) gives t ∈ Q(q) and
ũ ∈ Mat(Q(q)). The same holds for u = (l1, . . . , lw). Noting that the translation
parameters bi of the IFS all belong to Q(l1, . . . , lw, q), we finish the proof.

Q.E.D.
Finally, we give a proof of Theorem 1.9 (p.5), which was given by Feng [22]

through an argument by Drobot [15].

Proof of Theorem 1.9
If Φ satisfies the FTC, then Y has no accumulation point in R, a fortiori Y is not
dense in R.

Conversely, suppose Φ does not satisfy the FTC. Fix r0 ∈ R and ε0 > 0. We
want to show that there exists y ∈ Y such that |y − r0| < ε0. Since Y = −Y and
0 ∈ Y , we may assume r0 > 0. We claim that it suffices to show the following result:

(N)
Given any r > 0, and any positive integer M > 0, there exists y :=∑b(y)

i=a(y) q
isi ∈ Y , where si = si(y) ∈ (D(q)−D(q)) and a(y) > M ,

such that 0 < r − y ≤ r(1− 1/(2q)).
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For, suppose it is true. We obtain y1, . . . , yN ∈ Y by applying it N times, in the
way that letting rℓ := r0 −

∑ℓ
i=1 yi, we go through the following steps successively:

taking (r,M) := (r0, 1) −→

{
y1 =

∑b(y1)
i=a(y1)

qisi(y1), a(y1)>1

0 < r0 − y1 ≤ r0(1− 1/(2q)),

taking (r,M) := (r1, b(y1)) −→

{
y2 =

∑b(y2)
i=a(y2)

qisi(y2), a(y2)>b(y1)

0 < r1 − y2 ≤ r1(1− 1/(2q)),

... ...

taking (r,M) := (rN−1, b(yN−1)) −→

{
yN =

∑b(yN )
i=a(yN ) q

isi(yN), a(yN)>b(yN−1)

0 < rN−1 − yN ≤ rN−1(1− 1/(2q)).

Since a(yi+1) > b(yi) for all i, we have y∗ := y1 + · · · + yN ∈ Y . Also, we have
r0 − y∗ = rN−1 − yN , whence

0 < r0 − y∗ ≤ rN−1(1− 1/(2q)) = (rN−2 − yN−1)(1− 1/(2q))

≤ rN−2(1− 1/(2q))2 = (rN−3 − yN−2)(1− 1/(2q))2

≤ rN−3(1− 1/(2q))3 = · · ·
≤ r0(1− 1/(2q))N .

As the last expression is less than ε0 when N is large, we have verified our claim.
It remains to show (N). Fix r > 0 and M ∈ N. Since Φ does not satisfy the

FTC, by [22, Theorem 1.11 and Lemma 2.1], 0 is an accumulation point of Y . Our
argument now follows from [15]. Fix a large positive integer u0 ∈ N such that

(A.3) 1

qu0
< r and r +

1

qu0
− 1

q

(
r − 1

qu0

)
≤ r

(
1− 1

2q

)
.

Given n ∈ N, since Y = −Y and 0 is an accumulation point of Y , there exists z ∈ Y
such that

0 < z <
1

qu0+n
.

Accordingly, there exists v ≥ n such that
1

qu0+v+1
≤ z <

1

qu0+v
, therefore 1

qu0+1
≤ z · qv < 1

qu0
.

Observe that qvY ⊆ Y . Hence, we have shown that: given any n ∈ N, there
exists γ(n) :=

∑k(n)
i=h(n) q

isi ∈ Y , where si ∈ (D(q)−D(q)) and h(n) > n, such that
q−u0−1 ≤ γ(n) < q−u0 .

By (A.3), there exists N0 ≥ 1 such that

(A.4) N0

qu0
≤ r ≤ N0 + 1

qu0
.

Define g1 := γ(M), g2 := γ(k(M)), g3 := γ(k(k(M))) and so on up to gN0 . Note
that y :=

∑N0

j=1 gj ∈ Y , and we can write y =
∑b(y)

i=a(y) q
isi with si ∈ (D(q)−D(q))

and a(y) > M . Moreover, by the property of γ(n), we have

y ∈
[

N0

qu0+1
,
N0

qu0

)
.
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Together with (A.4), we have

0 < r − y ≤
(
N0 + 1

qu0

)
− N0

qu0+1

≤
(
r +

1

qu0

)
− N0

qu0+1

≤
(
r +

1

qu0

)
− 1

q

(
r − 1

qu0

)
≤ r

(
1− 1

2q

)
by (A.3).

This shows (N) and completes the proof.
Q.E.D.
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Appendix B

Symbolic computation of systems
of equations

During the research, we find examples and make conjectures by solving various
systems of equations. Here we demonstrate how we use GNU Octave 5.2.0 for the
symbolic computation of (5.6) (p.74). The purpose is to find a 5-tuple IFS such
that the associated q is not a PV number. Below is the code we use. We only check
the range 1 ≤ h, k ≤ 10. Inside the code, we ensure the following conditions hold:

1. q > 3. It is because if q ≤ 3, then [2; 0] = (q − 1)/2 ≤ 1, whence the IFS can
be reduced from a 5-tuple to a 4-tuple by dropping ∂1.

2. q has a non-real algebraic conjugate A with |A| ≥ 1.

3. We have |A| < |1 + σA(a)|.

4. We have ∣∣∣∣σA(a) + 1

A

∣∣∣∣ ≥ |σA(y)− 1|

for y = [1; 0] and [2; 1].

1 pkg load symbol ic
2 syms t A
3

4 myPrecis ion = 0 . 0 0 0 1 ;
5

6 f o r h = 1:10
7 eq1 = t − (A^h − 1) /(A^h + 1) == 0 ;
8 tExpress = s o l v e ( eq1 , t ) ;
9

10 f o r k = 1:10
11 eq2 = A−1 − 2∗ t − 2∗( A^k − 1 − t ) /A^k == 0 ;
12

13 myAns = f a c t o r ( subs ( eq2 , t , tExpress ) ) ;
14

15 myPolyCoeffs = sym2poly (numden( l h s (myAns) ) ) ;
16

17 myRoots = roo t s ( myPolyCoeffs ) ;
18

87
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19 myRootAbs = abs ( myRoots ) ;
20

21 q=1;
22 algeConj = 1 ;
23 i sSetAlgeConj = f a l s e ;
24 gtOneCount = 0 ;
25 f o r myAbsIndex = 1 : l ength (myRootAbs)
26

27 i f (myRootAbs( myAbsIndex ) > 1 − myPrecis ion )
28 gtOneCount = gtOneCount+1;
29

30 i f ( abs ( imag ( myRoots ( myAbsIndex ) ) ) < myPrecis ion && ...
r e a l ( myRoots ( myAbsIndex ) ) > 3 )

31 q = myRoots ( myAbsIndex ) ;
32 end
33

34 i f (~ i sSetAlgeConj && abs ( imag ( myRoots ( myAbsIndex ) ) ) ...
> myPrecis ion )

35 algeConj=myRoots ( myAbsIndex ) ;
36 i sSetAlgeConj = true ;
37 end
38

39 end
40

41 end
42

43 i f (q>1 && gtOneCount > 2 && isSetAlgeConj )
44

45 funTau = funct ion_handle ( tExpress ) ;
46 tau = funTau ( algeConj ) ;
47 a = funTau ( q ) ;
48

49 i f ( t rue
50 && abs ( algeConj ) < abs(1+tau ) + myPrecis ion %|A| < ...

|1+ t |
51 && abs ((1+ tau ) / algeConj ) > abs ( tau−1) − myPrecis ion ...

% |(1+ t ) /A| >= | t −1|
52 && abs ((1+ tau ) / algeConj ) > abs ( ( algeConj −1)/2−tau−1) ...

− myPrecis ion % |(1+ t ) /A| >= | (A−1)/2−t −1|
53 )
54 di sp ( ” #### My Choice : #### ” ) ;
55 h
56 k
57 myAns
58 myPolyCoeffs
59 myRoots
60 myRootAbs
61 q
62 algeConj
63 a
64 tau
65 di sp ( ” ” )
66 end
67 end
68 end
69 end

Below is an excerpt of the output. It shows the data for all h ≤ 6.
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1 #### My Choice : ####
2 h = 2
3 k = 5
4 myAns = (sym)
5

6 / 5 4 3 2 \
7 (A − 1) ∗\A − 4∗A − 3∗A − 4∗A − 4∗A − 4/
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
9 3 / 2 \

10 A ∗\A + 1/
11

12 myPolyCoeffs =
13

14 1 −5 1 −1 0 0 4
15

16 myRoots =
17

18 4.83442 + 0.00000 i
19 1.00000 + 0.00000 i
20 0.28501 + 0.97679 i
21 0.28501 − 0.97679 i
22 −0.70222 + 0.55321 i
23 −0.70222 − 0.55321 i
24

25 myRootAbs =
26

27 4.83442
28 1.00000
29 1.01752
30 1.01752
31 0.89395
32 0.89395
33

34 q = 4.8344
35 algeConj = 0.28501 + 0.97679 i
36 a = 0.91794
37 tau = 0.22056 + 3.41411 i
38

39 #### My Choice : ####
40 h = 2
41 k = 6
42 myAns = (sym)
43

44 / 6 5 4 3 2 \
45 (A − 1) ∗\A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − 4/
46 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
47 4 / 2 \
48 A ∗\A + 1/
49

50 myPolyCoeffs =
51

52 1 −5 1 −1 0 0 0 4
53

54 myRoots =
55

56 4.83566 + 0.00000 i
57 1.00000 + 0.00000 i
58 0.47421 + 0.89959 i
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59 0.47421 − 0.89959 i
60 −0.44923 + 0.83748 i
61 −0.44923 − 0.83748 i
62 −0.88563 + 0.00000 i
63

64 myRootAbs =
65

66 4.83566
67 1.00000
68 1.01693
69 1.01693
70 0.95035
71 0.95035
72 0.88563
73

74 q = 4.8357
75 algeConj = 0.47421 + 0.89959 i
76 a = 0.91798
77 tau = 0.077114 + 1.894563 i
78

79 #### My Choice : ####
80 h = 2
81 k = 7
82 myAns = (sym)
83

84 / 7 6 5 4 3 2 \
85 (A − 1) ∗\A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − 4∗A − 4/
86 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
87 5 / 2 \
88 A ∗\A + 1/
89

90 myPolyCoeffs =
91

92 1 −5 1 −1 0 0 0 0 4
93

94 myRoots =
95

96 4.83591 + 0.00000 i
97 1.00000 + 0.00000 i
98 0.60139 + 0.81532 i
99 0.60139 − 0.81532 i

100 −0.20496 + 0.96185 i
101 −0.20496 − 0.96185 i
102 −0.81438 + 0.41231 i
103 −0.81438 − 0.41231 i
104

105 myRootAbs =
106

107 4.83591
108 1.00000
109 1.01312
110 1.01312
111 0.98345
112 0.98345
113 0.91281
114 0.91281
115

116 q = 4.8359
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117 algeConj = 0.60139 + 0.81532 i
118 a = 0.91799
119 tau = 0.036971 + 1.355079 i
120

121 #### My Choice : ####
122 h = 2
123 k = 8
124 myAns = (sym)
125

126 / 6 5 4 \
127 (A − 1) ∗\A − 4∗A − 4∗A − 4∗A − 4/
128 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
129 6
130 A
131

132 myPolyCoeffs =
133

134 1 −5 0 4 0 −4 0 4
135

136 myRoots =
137

138 4.83596 + 0.00000 i
139 1.00000 + 0.00000 i
140 0.68932 + 0.73775 i
141 0.68932 − 0.73775 i
142 −0.65025 + 0.68175 i
143 −0.65025 − 0.68175 i
144 −0.91411 + 0.00000 i
145

146 myRootAbs =
147

148 4.83596
149 1.00000
150 1.00967
151 1.00967
152 0.94213
153 0.94213
154 0.91411
155

156 q = 4.8360
157 algeConj = 0.68932 + 0.73775 i
158 a = 0.91799
159 tau = 0.020649 + 1.070040 i
160

161 #### My Choice : ####
162 h = 2
163 k = 9
164 myAns = (sym)
165

166 / 9 8 7 6 5 4 3 2 ...
\

167 (A − 1) ∗\A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − 4∗A − 4∗A − 4∗A ...
− 4/

168 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ...
= 0

169 7 / 2 \
170 A ∗\A + 1/
171
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172 myPolyCoeffs =
173

174 1 −5 1 −1 0 0 0 0 0 0 4
175

176 myRoots =
177

178 4.83597 + 0.00000 i
179 1.00000 + 0.00000 i
180 0.75198 + 0.66993 i
181 0.75198 − 0.66993 i
182 0.16509 + 0.99346 i
183 0.16509 − 0.99346 i
184 −0.46622 + 0.84562 i
185 −0.46622 − 0.84562 i
186 −0.86884 + 0.32779 i
187 −0.86884 − 0.32779 i
188

189 myRootAbs =
190

191 4.83597
192 1.00000
193 1.00712
194 1.00712
195 1.00708
196 1.00708
197 0.96563
198 0.96563
199 0.92861
200 0.92861
201

202 q = 4.8360
203 algeConj = 0.75198 + 0.66993 i
204 a = 0.91799
205 tau = 0.012721 + 0.890809 i
206

207 #### My Choice : ####
208 h = 2
209 k = 10
210 myAns = (sym)
211

212 / 10 9 8 7 6 5 4 3 2
213 (A − 1) ∗\A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − 4∗A − 4∗A − ...

4∗A − 4∗A − 4
214 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
215 8 / 2 \
216 A ∗\A + 1/
217

218 \
219 /
220 − = 0
221

222

223

224 myPolyCoeffs =
225

226 1 −5 1 −1 0 0 0 0 0 0 0 4
227

228 myRoots =
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229

230 4.83598 + 0.00000 i
231 1.00000 + 0.00000 i
232 0.79790 + 0.61156 i
233 0.79790 − 0.61156 i
234 0.29680 + 0.96472 i
235 0.29680 − 0.96472 i
236 −0.29136 + 0.93814 i
237 −0.29136 − 0.93814 i
238 −0.75572 + 0.56820 i
239 −0.75572 − 0.56820 i
240 −0.93121 + 0.00000 i
241

242 myRootAbs =
243

244 4.83598
245 1.00000
246 1.00531
247 1.00531
248 1.00934
249 1.00934
250 0.98235
251 0.98235
252 0.94550
253 0.94550
254 0.93121
255

256 q = 4.8360
257 algeConj = 0.79790 + 0.61156 i
258 a = 0.91799
259 tau = 0.0084051 + 0.7664279 i
260

261 #### My Choice : ####
262 h = 3
263 k = 7
264 myAns = (sym)
265

266 / 7 6 5 4 3 2 \
267 (A − 1) ∗\A − 4∗A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − 4/
268 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
269 4 / 2 \
270 A ∗(A + 1) ∗\A − A + 1/
271

272 myPolyCoeffs =
273

274 1 −5 0 1 −1 0 0 0 4
275

276 myRoots =
277

278 4.96758 + 0.00000 i
279 1.00000 + 0.00000 i
280 0.62233 + 0.79529 i
281 0.62233 − 0.79529 i
282 −0.89303 + 0.36456 i
283 −0.89303 − 0.36456 i
284 −0.21309 + 0.89624 i
285 −0.21309 − 0.89624 i
286
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287 myRootAbs =
288

289 4.96758
290 1.00000
291 1.00984
292 1.00984
293 0.96458
294 0.96458
295 0.92123
296 0.92123
297

298 q = 4.9676
299 algeConj = 0.62233 + 0.79529 i
300 a = 0.98382
301 tau = 0.33454 + 4.65507 i
302

303 #### My Choice : ####
304 h = 3
305 k = 8
306 myAns = (sym)
307

308 / 7 6 5 4 2 \
309 (A − 1) ∗\A − 5∗A + A − 4∗A − 4∗A − 4/
310 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
311 5 / 2 \
312 A ∗\A − A + 1/
313

314 myPolyCoeffs =
315

316 1 −6 6 −5 4 −4 4 −4 4
317

318 myRoots =
319

320 4.96762 + 0.00000 i
321 1.00000 + 0.00000 i
322 0.70564 + 0.72551 i
323 0.70564 − 0.72551 i
324 0.00453 + 0.94872 i
325 0.00453 − 0.94872 i
326 −0.69398 + 0.62591 i
327 −0.69398 − 0.62591 i
328

329 myRootAbs =
330

331 4.96762
332 1.00000
333 1.01207
334 1.01207
335 0.94873
336 0.94873
337 0.93455
338 0.93455
339

340 q = 4.9676
341 algeConj = 0.70564 + 0.72551 i
342 a = 0.98382
343 tau = 0.13600 + 2.55767 i
344
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345 #### My Choice : ####
346 h = 3
347 k = 9
348 myAns = (sym)
349

350 / 9 8 7 6 5 4 3 2 ...
\

351 (A − 1) ∗\A − 4∗A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − 4∗A − 4∗A ...
− 4/

352 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ...
= 0

353 6 / 2 \
354 A ∗(A + 1) ∗\A − A + 1/
355

356 myPolyCoeffs =
357

358 1 −5 0 1 −1 0 0 0 0 0 4
359

360 myRoots =
361

362 4.96763 + 0.00000 i
363 1.00000 + 0.00000 i
364 0.76453 + 0.66223 i
365 0.76453 − 0.66223 i
366 0.17572 + 0.95398 i
367 0.17572 − 0.95398 i
368 −0.93453 + 0.29683 i
369 −0.93453 − 0.29683 i
370 −0.48954 + 0.79394 i
371 −0.48954 − 0.79394 i
372

373 myRootAbs =
374

375 4.96763
376 1.00000
377 1.01147
378 1.01147
379 0.97003
380 0.97003
381 0.98054
382 0.98054
383 0.93273
384 0.93273
385

386 q = 4.9676
387 algeConj = 0.76453 + 0.66223 i
388 a = 0.98382
389 tau = 0.074306 + 1.827876 i
390

391 #### My Choice : ####
392 h = 3
393 k = 10
394 myAns = (sym)
395

396 / 9 8 7 6 4 2 \
397 (A − 1) ∗\A − 5∗A + A − 4∗A − 4∗A − 4∗A − 4/
398 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
399 7 / 2 \
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400 A ∗\A − A + 1/
401

402 myPolyCoeffs =
403

404 1 −6 6 −5 4 −4 4 −4 4 −4 4
405

406 myRoots =
407

408 4.96763 + 0.00000 i
409 1.00000 + 0.00000 i
410 0.80757 + 0.60657 i
411 0.80757 − 0.60657 i
412 0.30994 + 0.93464 i
413 0.30994 − 0.93464 i
414 −0.79886 + 0.52788 i
415 −0.79886 − 0.52788 i
416 −0.30247 + 0.89244 i
417 −0.30247 − 0.89244 i
418

419 myRootAbs =
420

421 4.96763
422 1.00000
423 1.01000
424 1.01000
425 0.98469
426 0.98469
427 0.95751
428 0.95751
429 0.94230
430 0.94230
431

432 q = 4.9676
433 algeConj = 0.80757 + 0.60657 i
434 a = 0.98382
435 tau = 0.046163 + 1.446707 i
436

437 #### My Choice : ####
438 h = 4
439 k = 3
440 myAns = (sym)
441

442 / 4 3 2 \
443 (A − 1) ∗\A − 4∗A − 4∗A − 4∗A + 1/
444 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
445 4
446 A + 1
447

448 myPolyCoeffs =
449

450 1 −5 0 0 5 −1
451

452 myRoots =
453

454 4.96069 + 0.00000 i
455 −0.58114 + 0.81380 i
456 −0.58114 − 0.81380 i
457 1.00000 + 0.00000 i
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458 0.20158 + 0.00000 i
459

460 myRootAbs =
461

462 4.96069
463 1.00000
464 1.00000
465 1.00000
466 0.20158
467

468 q = 4.9607
469 algeConj = −0.58114 + 0.81380 i
470 a = 0.99670
471 tau = −9.7067e−15 + 2.9143 e+00 i
472

473 #### My Choice : ####
474 h = 4
475 k = 9
476 myAns = (sym)
477

478 / 9 8 7 6 5 4 3 2 ...
\

479 (A − 1) ∗\A − 4∗A − 4∗A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − 4∗A ...
− 4/

480 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ...
= 0

481 5 / 4 \
482 A ∗\A + 1/
483

484 myPolyCoeffs =
485

486 1 −5 0 0 1 −1 0 0 0 0 4
487

488 myRoots =
489

490 4.99358 + 0.00000 i
491 1.00000 + 0.00000 i
492 0.76784 + 0.64903 i
493 0.76784 − 0.64903 i
494 0.14396 + 0.93614 i
495 0.14396 − 0.93614 i
496 −0.53277 + 0.84106 i
497 −0.53277 − 0.84106 i
498 −0.87582 + 0.35233 i
499 −0.87582 − 0.35233 i
500

501 myRootAbs =
502

503 4.99358
504 1.00000
505 1.00539
506 1.00539
507 0.94714
508 0.94714
509 0.99560
510 0.99560
511 0.94403
512 0.94403
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513

514 q = 4.9936
515 algeConj = 0.76784 + 0.64903 i
516 a = 0.99679
517 tau = 0.38637 + 5.89609 i
518

519 #### My Choice : ####
520 h = 4
521 k = 10
522 myAns = (sym)
523

524 / 10 9 8 7 6 5 4 3 2
525 (A − 1) ∗\A − 4∗A − 4∗A − 4∗A − 3∗A − 4∗A − 4∗A − 4∗A − ...

4∗A − 4∗A − 4
526 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
527 6 / 4 \
528 A ∗\A + 1/
529

530 \
531 /
532 − = 0
533

534

535

536 myPolyCoeffs =
537

538 1 −5 0 0 1 −1 0 0 0 0 0 4
539

540 myRoots =
541

542 4.99358 + 0.00000 i
543 1.00000 + 0.00000 i
544 0.81142 + 0.59705 i
545 0.81142 − 0.59705 i
546 0.28909 + 0.91521 i
547 0.28909 − 0.91521 i
548 −0.34784 + 0.91067 i
549 −0.34784 − 0.91067 i
550 −0.78596 + 0.59573 i
551 −0.78596 − 0.59573 i
552 −0.92700 + 0.00000 i
553

554 myRootAbs =
555

556 4.99358
557 1.00000
558 1.00741
559 1.00741
560 0.95978
561 0.95978
562 0.97484
563 0.97484
564 0.98622
565 0.98622
566 0.92700
567

568 q = 4.9936
569 algeConj = 0.81142 + 0.59705 i
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570 a = 0.99679
571 tau = 0.16641 + 3.20103 i
572

573 #### My Choice : ####
574 h = 5
575 k = 4
576 myAns = (sym)
577

578 / 4 3 2 \
579 (A − 1) ∗\A − 5∗A + A − 5∗A + 1/
580 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
581 4 3 2
582 A − A + A − A + 1
583

584 myPolyCoeffs =
585

586 1 −6 6 −6 6 −1
587

588 myRoots =
589

590 4.99227 + 0.00000 i
591 −0.09629 + 0.99535 i
592 −0.09629 − 0.99535 i
593 1.00000 + 0.00000 i
594 0.20031 + 0.00000 i
595

596 myRootAbs =
597

598 4.99227
599 1.00000
600 1.00000
601 1.00000
602 0.20031
603

604 q = 4.9923
605 algeConj = −0.096291 + 0.995353 i
606 a = 0.99936
607 tau = −2.2011e−15 + 1.6521 e+00 i
608

609 #### My Choice : ####
610 h = 5
611 k = 7
612 myAns = (sym)
613

614 / 7 6 5 4 3 2 \
615 (A − 1) ∗\A − 4∗A − 4∗A − 4∗A − 4∗A − 3∗A − 4∗A − 4/
616 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
617 2 / 4 3 2 \
618 A ∗(A + 1) ∗\A − A + A − A + 1/
619

620 myPolyCoeffs =
621

622 1 −5 0 0 0 1 −1 0 4
623

624 myRoots =
625

626 4.99867 + 0.00000 i
627 1.00000 + 0.00000 i
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628 0.59884 + 0.75480 i
629 0.59884 − 0.75480 i
630 −0.24259 + 0.97690 i
631 −0.24259 − 0.97690 i
632 −0.85558 + 0.34459 i
633 −0.85558 − 0.34459 i
634

635 myRootAbs =
636

637 4.99867
638 1.00000
639 0.96350
640 0.96350
641 1.00657
642 1.00657
643 0.92237
644 0.92237
645

646 q = 4.9987
647 algeConj = −0.24259 + 0.97690 i
648 a = 0.99936
649 tau = 0.52441 + 5.54584 i
650

651 #### My Choice : ####
652 h = 6
653 k = 5
654 myAns = (sym)
655

656 / 6 5 4 3 2 \
657 (A − 1) ∗\A − 4∗A − 4∗A − 4∗A − 4∗A − 4∗A + 1/
658 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = 0
659 / 2 \ / 4 2 \
660 \A + 1/∗\A − A + 1/
661

662 myPolyCoeffs =
663

664 1 −5 0 0 0 0 5 −1
665

666 myRoots =
667

668 4.99846 + 0.00000 i
669 −0.83080 + 0.55657 i
670 −0.83080 − 0.55657 i
671 0.23154 + 0.97283 i
672 0.23154 − 0.97283 i
673 1.00000 + 0.00000 i
674 0.20006 + 0.00000 i
675

676 myRootAbs =
677

678 4.99846
679 1.00000
680 1.00000
681 1.00000
682 1.00000
683 1.00000
684 0.20006
685
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686 q = 4.9985
687 algeConj = −0.83080 + 0.55657 i
688 a = 0.99987
689 tau = −1.5065e−14 + 4.9341 e+00 i
690

691 #### My Choice : ####
692 h = 6
693 k = 9
694 myAns = (sym)
695

696 / 9 8 7 6 5 4 3 2 ...
\

697 (A − 1) ∗\A − 4∗A − 4∗A − 4∗A − 4∗A − 4∗A − 3∗A − 4∗A − 4∗A ...
− 4/

698 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ...
= 0

699 3 / 2 \ / 4 2 \
700 A ∗\A + 1/∗\A − A + 1/
701

702 myPolyCoeffs =
703

704 1 −5 0 0 0 0 1 −1 0 0 4
705

706 myRoots =
707

708 4.99974 + 0.00000 i
709 1.00000 + 0.00000 i
710 0.75140 + 0.63173 i
711 0.75140 − 0.63173 i
712 0.14495 + 0.99711 i
713 0.14495 − 0.99711 i
714 −0.90460 + 0.36583 i
715 −0.90460 − 0.36583 i
716 −0.49162 + 0.78560 i
717 −0.49162 − 0.78560 i
718

719 myRootAbs =
720

721 4.99974
722 1.00000
723 0.98167
724 0.98167
725 1.00759
726 1.00759
727 0.97577
728 0.97577
729 0.92674
730 0.92674
731

732 q = 4.9997
733 algeConj = 0.14495 + 0.99711 i
734 a = 0.99987
735 tau = 0.12851 + 2.15657 i
736

737 . . . . . .
738

739 >>
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Appendix C

Numerical computation of
characteristic vectors

We use Scilab 6.1.0 for the numerical computation of characteristic vectors. Below
is the code we use. Inside the code, we make an assumption that the length of
the second components of the characteristic vectors are less than 10. The constant
typeVectorAllowedLength corresponds to this upper bound. The meanings of the
parameters of this program are as follows.

1. contractInv: the value of q.

2. myDigitSet: the value of {∂0, . . . , ∂m}.

3. testLv: the number of iterations of the IFS we would like to examine.

4. outputType: “0” means listing all characteristic vectors given by the 1-st, 2-
nd, . . . , testLv-th basic net intervals. “1” means just listing the characteristic
vectors given by the testLv-th basic net intervals.

1 f unc t i on [ x]= l i s tCharVect ( contract Inv , myDigitSet , testLv , outputType )
2

3 // outputType :
4 //0 − d e f a u l t
5 //1 − l a s t testLv Only
6

7 myPrecis ion = 0 .000001 ;
8 typeVectorAllowedLength = 10 ;
9

10 // a fundamental i n t e r v a l i s an n−th ba s i c net i n t e r v a l t imes q^n ...
f o r some n

11 fundamenta l In te rva l s = [ ] ;
12

13 // the c h a r a c t e r i s t i c v e c t o r s w i l l be s to r ed in the below array
14 typeCoding = [ ] ;
15 typeCodingIndex = 1 ;
16

17 currentLv = 0 ;
18 prevLvCombine = [ 0 ] ;
19 thisLvCombine = [ ] ;
20

103
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21 // check c o r r e c t norma l i za t i on
22 i f ( abs ( myDigitSet ( l ength ( myDigitSet ) ) − ( contract Inv −1) ) > ...

myPrecis ion )
23 di sp ( ”Wrong norma l i za t i on ” ) ;
24 re turn ;
25 end
26

27 // check i f the i n t e r v a l s over lap
28 f o r i =2: l ength ( myDigitSet )
29 i f myDigitSet ( i )−myDigitSet ( i −1)>= 1 + myPrecis ion
30 di sp ( ”Gap too l a r g e : ” + s t r i n g ( myDigitSet ( i ) ) +”−”+ ...

s t r i n g ( myDigitSet ( i −1) ) ) ;
31 re turn ;
32 end
33 end
34

35 whi le currentLv < testLv
36 currentLv = currentLv +1;
37

38 di sp ( ”#################### Level ” + s t r i n g ( currentLv ) + ” ...
#######################” ) ;

39

40 th i sLvTai lArray = cont rac t Inv ∗ prevLvCombine ;
41

42 thisLvCombine = [ ] ;
43 thisLvCombineIndex = 1 ;
44

45 i f currentLv==1
46 thisLvCombine = myDigitSet ;
47 e l s e
48 f o r d i g i t I n d e x = 1 : l ength ( myDigitSet )
49 f o r th i sLvTai l Index = 1 : l ength ( th i sLvTai lArray )
50

51 thisLvCombine ( thisLvCombineIndex ) = ...
myDigitSet ( d i g i t I n d e x ) + ...
th i sLvTai lArray ( th i sLvTai l Index ) ;

52

53 thisLvCombineIndex = thisLvCombineIndex +1;
54 end
55 end
56 end
57

58 thisLvCombine = uniqueAscArray ( g so r t ( thisLvCombine , ' g ' , ' i ' ) , ...
myPrecis ion ) ; // ' i ' means ascending

59 r ightEndPoints = thisLvCombine + 1 ;
60 a l lEndPoints = uniqueAscArray ( g so r t ( [ thisLvCombine ...

r ightEndPoints ] , ' g ' , ' i ' ) , myPrecis ion ) ;
61

62 prevLvCombine = thisLvCombine ;
63

64 i f ( outputType==1 && currentLv < testLv )
65 cont inue ;
66 end
67

68 o r i I n t e rva lF i r s tReach Index = 1 ;
69 f o r endPointIndex = 1 : l ength ( a l lEndPoints )−1
70

71 fundaLeftEnd = al lEndPoints ( endPointIndex ) ;
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72 fundaRightEnd = al lEndPoints ( endPointIndex+1) ;
73

74 fundamenta l In te rva l s ( currentLv , end PointIndex , 1) = ...
fundaLeftEnd ;

75 fundamenta l In te rva l s ( currentLv , end PointIndex , 2) = ...
fundaRightEnd ;

76

77 type2ndCompForThisFunda = [ ] ;
78

79 f i r s t R e a c h = 0 ;
80 f o r o r i In t e rva lLe f tEndIndex = or i I n t e rva lF i r s tReach Index : ...

l ength ( thisLvCombine )
81

82 // an o r i g i n a l i n t e r v a l i s o f the form ...
[ d0+q∗d1 +.. .+q^n∗dn , d0+q∗d1 +.. .+q^n∗dn+1]

83 o r i I n t e rva lLe f tEnd = ...
thisLvCombine ( o r i In t e rva lLe f tEndIndex ) ;

84 or i Inte rva lR ightEnd = or i In t e rva lLe f tEnd +1;
85

86 i f ( o r i In t e rva lLe f tEnd >fundaRightEnd )
87 break ;
88 end
89

90 // i f the l e f t end po int o f the funda i n t e r v a l equa l s ...
the l e f t end po int o f an o r i g i n a l i n t e r v a l

91 i f ( abs ( o r i I n t e rva lLe f tEnd − fundaLeftEnd ...
)<myPrecis ion )

92

93 type2ndCompForThisFunda = [ type2ndCompForThisFunda 0 ] ;
94

95 i f ( f i r s t R e a c h == 0)
96 f i r s t R e a c h = 1 ;
97 end
98

99 // i f an o r i g i n a l i n t e r v a l conta in s the funda i n t e r v a l
100 e l s e i f ( ( o r i I n t e rva lLe f tEnd < fundaLeftEnd + ...

myPrecis ion ) && ( fundaRightEnd < ...
o r i Inte rva lR ightEnd + myPrecis ion ) && ( abs ( ...
o r i Inte rva lR ightEnd − fundaLeftEnd )> myPrecis ion ) )

101

102 type2ndCompForThisFunda = [ type2ndCompForThisFunda ...
fundaLeftEnd−o r i I n t e rva lLe f tEnd ] ;

103

104 i f ( f i r s t R e a c h == 0)
105 f i r s t R e a c h = 1 ;
106 end
107

108 end
109

110 i f ( f i r s t R e a c h == 1)
111 o r i I n t e rva lF i r s tReach Index = or i In t e rva lLe f tEndIndex ;
112 f i r s t R e a c h = 2 ;
113 end
114

115 end
116

117 // s t o r e the c h a r a c t e r i s t i c vec to r
118 typeCoding ( typeCodingIndex , : ) = ...



106 Appendix C. Numerical computation of characteristic vectors

[ ( fundaRightEnd−fundaLeftEnd ) type2ndCompForThisFunda ...
−1∗ones (1 , typeVectorAllowedLength − ...
l ength ( type2ndCompForThisFunda ) ) ] ;

119 typeCodingIndex = typeCodingIndex +1;
120

121 end
122 end
123

124 x = uniqueType ( typeCoding , myPrecis ion ) ;
125 di sp ( ” S i z e : ” + s t r i n g ( s i z e (x , 1 ) ) ) ;
126

127 endfunct ion
128

129 f unc t i on [ rtn ]= uniqueAscArray ( input , p r e c i s i o n )
130 rtn = [ 0 ] ;
131 f o r inputIndex = 1 : l ength ( input )
132 i f ( abs ( input ( inputIndex ) − rtn ( l ength ( rtn ) ) ) > p r e c i s i o n )
133 rtn = [ rtn input ( inputIndex ) ] ;
134 end
135 end
136 endfunct ion
137

138 f unc t i on rtn= myGsortFun ( input )
139 rtn = i n t (100000∗ input ) ;
140 endfunct ion
141

142 f unc t i on [ rtn ]= uniqueType ( input , p r e c i s i o n )
143

144 rtn = [ ] ;
145 rtnNo = 0 ;
146

147 f o r inputIndex = 1 : l ength ( input ( : , 1 ) )
148

149 i sCons ide red = 0 ;
150 f o r tempRtnIndex = 1 : l ength ( rtn ( : , 1 ) )
151 i f ( abs ( input ( inputIndex , 1 ) − rtn ( tempRtnIndex , 1 ) ) < ...

p r e c i s i o n )
152

153 a l lEqua l = 1 ;
154 f o r remainingRowIndex = 2 : l ength ( input ( inputIndex , : ) )
155 i f ( abs ( input ( inputIndex , remainingRowIndex ) − ...

r tn ( tempRtnIndex , remainingRowIndex ) ) > ...
p r e c i s i o n )

156 a l lEqua l = 0 ;
157 break ;
158 end
159 end
160

161 i f ( a l lEqua l ==1)
162 i sCons ide red = 1 ;
163 end
164 end
165 end
166

167 i f ( i sCons ide red == 0)
168 rtnNo = rtnNo +1;
169 rtn ( rtnNo , : ) = input ( inputIndex , : ) ;
170 end
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171 end
172

173 rtn = gso r t ( rtn , ' l r ' , ' i ' , l i s t ( myGsortFun ) ) ;
174

175 endfunct ion

Sample output for Chapter 5 Example V is as follows. It demonstrates numerically
that, ignoring the third components of the characteristic vectors, the 1st iteration
of the IFS gives rise to seven characteristic vectors, the 2nd iteration gives three
more, so does the 3rd, and there is no new characteristic vector starting from the
4th iteration.

1

2 −−> q = roo t s ( [ 1 −4 −4 −4 1 ] ) (1 )
3 q =
4

5 4.9606929
6

7 −−> a = ( q^4−1) /( q^4+1)
8 a =
9

10 0.9967028
11

12 −−> [ x ] = l i s tCharVect (q , [ 0 a (q−1)/2 q−1−a q−1] , 1 , 0)
13

14 ”#################### Level 1 #######################”
15

16 ” S i z e : 7”
17 x =
18

19 0.0032972 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1.
20 0.0163564 0.9836436 0 . −1. −1. −1. −1. −1. −1. −1. −1.
21 0.9672873 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
22 0.9803465 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
23 0.9803465 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
24 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1. −1.
25 0.9967028 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
26

27 −−> [ x ] = l i s tCharVect (q , [ 0 a (q−1)/2 q−1−a q−1] , 2 , 0)
28

29 ”#################### Level 1 #######################”
30

31 ”#################### Level 2 #######################”
32

33 ” S i z e : 10”
34 x =
35

36 0.0032972 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1.
37 0.0163564 0.9836436 0 . −1. −1. −1. −1. −1. −1. −1. −1.
38 0.0811388 0.9188612 0 . −1. −1. −1. −1. −1. −1. −1. −1.
39 0.915564 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
40 0.915564 0.0811388 −1. −1. −1. −1. −1. −1. −1. −1. −1.
41 0.9672873 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
42 0.9803465 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
43 0.9803465 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
44 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1. −1.
45 0.9967028 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
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46

47 −−> [ x ] = l i s tCharVect (q , [ 0 a (q−1)/2 q−1−a q−1] , 3 , 0)
48

49 ”#################### Level 1 #######################”
50

51 ”#################### Level 2 #######################”
52

53 ”#################### Level 3 #######################”
54

55 ” S i z e : 13”
56 x =
57

58 0.0032972 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1.
59 0.0163564 0.9836436 0 . −1. −1. −1. −1. −1. −1. −1. −1.
60 0.0811388 0.9188612 0 . −1. −1. −1. −1. −1. −1. −1. −1.
61 0.4025048 0.5974952 0 . −1. −1. −1. −1. −1. −1. −1. −1.
62 0.594198 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
63 0.594198 0.4025048 −1. −1. −1. −1. −1. −1. −1. −1. −1.
64 0.915564 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
65 0.915564 0.0811388 −1. −1. −1. −1. −1. −1. −1. −1. −1.
66 0.9672873 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
67 0.9803465 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
68 0.9803465 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
69 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1. −1.
70 0.9967028 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
71

72 −−> [ x ] = l i s tCharVect (q , [ 0 a (q−1)/2 q−1−a q−1] , 4 , 0)
73

74 ”#################### Level 1 #######################”
75

76 ”#################### Level 2 #######################”
77

78 ”#################### Level 3 #######################”
79

80 ”#################### Level 4 #######################”
81

82 ” S i z e : 13”
83 x =
84

85 0.0032972 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1.
86 0.0163564 0.9836436 0 . −1. −1. −1. −1. −1. −1. −1. −1.
87 0.0811388 0.9188612 0 . −1. −1. −1. −1. −1. −1. −1. −1.
88 0.4025048 0.5974952 0 . −1. −1. −1. −1. −1. −1. −1. −1.
89 0.594198 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
90 0.594198 0.4025048 −1. −1. −1. −1. −1. −1. −1. −1. −1.
91 0.915564 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
92 0.915564 0.0811388 −1. −1. −1. −1. −1. −1. −1. −1. −1.
93 0.9672873 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
94 0.9803465 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
95 0.9803465 0.0163564 −1. −1. −1. −1. −1. −1. −1. −1. −1.
96 0.9967028 0 . −1. −1. −1. −1. −1. −1. −1. −1. −1.
97 0.9967028 0.0032972 −1. −1. −1. −1. −1. −1. −1. −1. −1.
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