NUMERATION SYSTEMS WITH

FINITE TYPE CONDITION

(Part II: Demonstration)

Demonstration

Let A be an algebraic conjugate of q, and $y \in Y$.

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ

satisfies the FTC

Let
$$A$$
 be an algebraic conjugate of q , and $y \in Y$. Suppose Φ satisfies the FTC and

raic conjugate of
$$q$$
, and

 $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i},$

satisfies the FTC and

where $t_i \in (D-D)$.

Let
$$A$$
 be an algebraic conjugate of q , and $y \in Y$. Suppose Φ

et
$$A$$
 be an algebraic conjugate of q , and

 $y = \sum_{i=1}^{n} \frac{t_i}{q^i},$

where $t_i \in (D-D)$. If |A| > 1,

Let
$$A$$
 be an algebraic conjugate of q , and $y \in Y$. Suppose Φ satisfies the FTC and

t
$$A$$
 be an algebraic conjugate of q , and

 $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i},$

where $t_i \in (D-D)$. If |A| > 1, then

braic conjugate of
$$q$$
, and

 $y = \sum_{i=1}^{n} \frac{t_i}{q^i},$

 $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}.$

Let
$$A$$
 be an algebraic conjugate of q , and $y \in Y$. Suppose Φ satisfies the FTC and

where $t_i \in (D-D)$. If |A| > 1, then

Let
$$A$$
 be an algebraic conjugate of q , and $y \in Y$. Suppose Φ satisfies the FTC and

t
$$A$$
 be an algebraic conjugate of q , and

 $y = \sum_{i=1}^{n} \frac{t_i}{q^i},$

 $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}.$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. We have

(a)
$$\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$$
 is a finite set.
(b) If $|A| > 1$, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (D-D)$. We have

(a)
$$\{yq^n - t_1q^{n-1} - \dots - t_n : n \ge 0\}$$
 is a finite set.
(b) If $|A| > 1$, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(a)
$$\{yq - t_1q - \cdots - t_n : n \geq 0\}$$
 is a finite set.
(b) If $|A| > 1$, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

$\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right]$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\frac{1}{\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y\right]} \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} = \left(yq^n - t_1q^{n-1} - \dots - t_n\right)\right].$$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

L.H.S.:

 $\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y\right] \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n)\right].$

L.H.S.: $\left|q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i}\right| \leq \sum_{1}^{\infty} \frac{\mathsf{const.}}{q^i} =: C_0.$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\frac{1}{\left[\frac{t_1}{t_1} + \cdots + \frac{t_n}{t_n} + \sum_{n=1}^{\infty} \right]}$$

 $\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y\right] \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n)\right].$

$$\frac{1}{\left[\frac{t_1}{q} + \cdots + \frac{t_n}{q^n} + \sum_{n=1}^{\infty}\right]}$$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A|>1$$
, then $\sigma_A(y)=\sum_{i=1}^\infty \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

R.H.S.:

$$\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \right]$$

 $\left| \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right| \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} \left(yq^n - t_1q^{n-1} - \dots - t_n \right) =: \xi_n \right].$

L.H.S.: $\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

 $\left| \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right| \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} \left(yq^n - t_1q^{n-1} - \dots - t_n \right) =: \xi_n \right].$

R.H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

L.H.S.: $\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$

$$\left[\frac{\iota_1}{q} + \cdots + \frac{\iota_n}{q^n} + \sum_{n=0}^{\infty} \right]$$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

 $\left| \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right| \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} \left(yq^n - t_1q^{n-1} - \dots - t_n \right) =: \xi_n \right].$

$$\left\lfloor \frac{\iota_1}{q} + \cdots + \frac{\iota_n}{q^n} + \sum_{r=1}^{n} \right\rfloor$$

$$\left[\frac{\iota_1}{q} + \cdots + \frac{\iota_n}{q^n} + \sum\right]$$

$$\begin{bmatrix} q & & & q^n & & \angle n \\ & & & & & \end{bmatrix}$$

L.H.S.:
$$\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{n=1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$$

H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q \right]$$

H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q \right]$$

R.H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$$

 $\Rightarrow y \in \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

$$(D) + \cdots + q(D-D) + (D-D)$$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\left[\frac{t_1}{a} + \cdots + \frac{t_n}{a^n} + \sum\right]$$

 $\left| \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right| \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} \left(yq^n - t_1q^{n-1} - \dots - t_n \right) =: \xi_n \right].$

$$-\frac{t_n}{q^n} + \sum_{n+1}^{\infty}$$

$$+\frac{t_n}{a^n}+\sum_{i=1}^{\infty}$$

$$\frac{t_i}{q^i} = \sum_{n=1}^{\infty} \frac{t_i}{q^i} = \sum_{n=1}^{\infty} \frac{t_i}{q^i}$$

 $\Rightarrow y \in [q^{?}(D-D) + \cdots + q(D-D) + (D-D)]$

L.H.S.:
$$\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\mathsf{const.}}{q^i} =: C_0.$$

R.H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

$$\stackrel{\textstyle \smile}{=} n+1q$$

 $\Rightarrow \xi_n \in [q^{2+n}(D-D) + \cdots + q(D-D) + (D-D)]$ (because $t_i \in (D-D)$)

$$n+1q$$
 =: (

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\frac{1}{\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y\right]} \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} \left(yq^n - t_1q^{n-1} - \dots - t_n\right) =: \xi_n\right].$$

L.H.S.: $\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$

H.S.:
$$\left|q^{n}\sum_{n+1}^{s}\frac{q^{i}}{q^{i}}\right| \leq \sum_{1}^{s}\frac{\text{const.}}{q^{i}} =: C_{0}.$$
H.S.: $u \in Y = \prod_{n=1}^{\infty} \left[q^{\ell}(\mathsf{D}-\mathsf{D}) + \cdots + q(\mathsf{D}-\mathsf{D})\right]$

.H.S.:
$$|q| \angle_{n+1} |\overline{q^i}| \le \angle_1 |\overline{q^i}| = 0.00$$
.

.H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell} (\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) \right]$$

R.H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(D-D) + \dots + q(D-D) + (D-D) \right]$$

$$\left[q^{\ell}(\mathsf{D}-\mathsf{D})+\cdots+q(\mathsf{D}-\mathsf{D})+(\mathsf{D}-\mathsf{D})\right]$$

$$\underset{\ell=0}{\overset{\infty}{\triangleright}} \left[q^{\ell}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D}) \right]$$

R.H.S.:
$$y \in Y = \bigcup_{\ell=0} [q^{\ell}(D-D) + \dots + q(D-D) + (D-D)]$$

 $\Rightarrow y \in [q^{\ell}(D-D) + \dots + q(D-D) + (D-D)]$

$$\Rightarrow y \in [q^{?}(D-D) + \dots + q(D-D)]$$

$$\Rightarrow y \in [q^{?}(D-D) + \dots + q(D-D)]$$

$$\Rightarrow y \in \left[q^{?}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D})\right]$$

$$\Rightarrow \xi \in \left[q^{?+n}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D})\right] \text{ (because } t \in (\mathsf{D} - \mathsf{D}))$$

$$\Rightarrow y \in \left[q^{2}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$$

$$\Rightarrow y \in [q(D-D) + \dots + q(D-D) + (D-D)]$$

$$\Rightarrow \mathcal{E}_n \in [q^{2+n}(D-D) + \dots + q(D-D) + (D-D)] \text{ (because } t_i \in (D-D))$$

$$\Rightarrow \xi_n \in \left[q^{?+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right] \text{ (because } t_i \in (\mathsf{D}-\mathsf{D})\text{)}$$

$$\Rightarrow \xi_n \in \left[q^{?+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right] \text{ (because } t_i \in (\mathsf{D}-\mathsf{D})\text{)}$$

$$\Rightarrow \xi_n \in V$$
(D-D) + \cdots + q(D-D) + (D-D) \cdot (because $t_i \in (D-D)$)

$$\Rightarrow \xi_n \in [q \quad (B \quad B) + q(B \quad B) + (B \quad B)] \text{ (because } v_i \in (B \quad B))$$

$$\Rightarrow \xi_n \in Y.$$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set. (b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y\right] \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n) =: \xi_n\right].$$

L.H.S.: $\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$

H.S.:
$$\left|q^{r^{\ell}}\sum_{n+1}\frac{q^{\ell}}{q^{\ell}}\right| \leq \sum_{1}\frac{\operatorname{const.}}{q^{\ell}} =: C_{0}.$$
H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D})\right]$

R.H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

R.H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$$

$$\Rightarrow y \in \left[q^{2}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$$

$$\Rightarrow y \in \left[q^{?}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right]$$

$$\Rightarrow \xi_{n} \in \left[q^{?+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right] \text{ (because } t_{i} \in (\mathsf{D}-\mathsf{D})\text{)}$$

 $\Rightarrow \xi_n \in [q^{?+n}(D-D) + \cdots + q(D-D) + (D-D)]$ (because $t_i \in (D-D)$)

 $\Rightarrow \xi_n \in Y$.

∴ L.H.S. & R.H.S.

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A|>1$$
, then $\sigma_A(y)=\sum_{i=1}^\infty \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\left[\frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y\right] \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n) =: \xi_n\right].$$

L.H.S.:
$$\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\mathsf{const.}}{q^i} =: C_0.$$

$$|q^n \sum_{n+1}^{\infty} \frac{q^i}{q^i}| \le \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$$

H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q \right]$$

 $y \in \left[q^{2}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

 \therefore L.H.S. & R.H.S. $\Rightarrow \{\xi_n : n \geq 0\} \subseteq [-C_0, C_0] \cap Y$.

R.H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$$

$$\Rightarrow y \in \left[q^{2}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$$

$$\Rightarrow y \in \left[q^{?}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right]$$

$$\Rightarrow \xi_{n} \in \left[q^{?+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right] \text{ (because } t_{i} \in (\mathsf{D}-\mathsf{D})\text{)}$$

$$\Rightarrow y \in \left[q^{?}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right]$$

$$\Rightarrow \xi_{n} \in \left[q^{?+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right] \text{ (because } t_{i} \in (\mathsf{D}-\mathsf{D})\text{)}$$

$$\Rightarrow y \in \left[q^{?}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right]$$

$$\Rightarrow \xi_{n} \in \left[q^{?+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right] \text{ (because } t_{i} \in (\mathsf{D}-\mathsf{D})\text{)}$$

$$\Rightarrow y \in [q (\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D})]$$

$$\Rightarrow \xi_n \in [q^{?+n}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D})] \text{ (because } t_i \in (\mathsf{D} - \mathsf{D}))$$

$$\Rightarrow y \in [q^{!}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})]$$

$$\Rightarrow \xi_{n} \in [q^{?+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})] \text{ (because } t_{i} \in (\mathsf{D}-\mathsf{D}))$$

$$\Rightarrow \xi_n \in \left[q^{t+n}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right] \text{ (because } t_i \in (\mathsf{D}-\mathsf{D})\text{)}$$
$$\Rightarrow \xi_n \in Y.$$

$$\Rightarrow \xi_n \in Y.$$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\begin{bmatrix} \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \end{bmatrix} \Rightarrow \begin{bmatrix} q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n) =: \xi_n \end{bmatrix}.$$

$$\mathsf{L.H.S.:} \quad \begin{vmatrix} q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \end{vmatrix} \leq \sum_{1}^{\infty} \frac{\mathsf{const.}}{q^i} =: C_0.$$

R.H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

R.H.S.:
$$y \in Y = \bigcup_{\ell=0} [q^{\ell}(D-D) + \dots + q(D-D) + (D-D)]$$

 $\Rightarrow y \in [q^{\ell}(D-D) + \dots + q(D-D) + (D-D)]$
 $\Rightarrow \xi_n \in [q^{\ell+n}(D-D) + \dots + q(D-D) + (D-D)]$ (because $t_i \in (D-D)$)

 $\Rightarrow \xi_n \in Y$.

$$\therefore$$
 L.H.S. & R.H.S. $\Rightarrow \{\xi_n : n \geq 0\} \subseteq [-C_0, C_0] \cap Y$.

 $:: \mathsf{FTC} \Rightarrow Y \mathsf{has} \mathsf{no} \mathsf{accumulation} \mathsf{point}$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$.

Proof of item(a)

 $\left| \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right| \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n) =: \xi_n \right].$

L.H.S.:
$$\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$$

R.H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

R.H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{I}) \right]$$

 $\Rightarrow y \in \left[q^{2}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

 $\Rightarrow \xi_n \in Y$.

 $\Rightarrow \xi_n \in [q^{?+n}(D-D) + \cdots + q(D-D) + (D-D)]$ (because $t_i \in (D-D)$)

 \therefore L.H.S. & R.H.S. $\Rightarrow \{\xi_n : n \geq 0\} \subseteq [-C_0, C_0] \cap Y$. $:: \mathsf{FTC} \Rightarrow Y \text{ has no accumulation point } \Rightarrow [-C_0, C_0] \cap Y \text{ is a finite set}$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

$$\begin{bmatrix} \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \end{bmatrix} \Rightarrow \begin{bmatrix} q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n) =: \xi_n \end{bmatrix}.$$

$$\mathsf{L.H.S.:} \quad \begin{vmatrix} q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \end{vmatrix} \leq \sum_{1}^{\infty} \frac{\mathsf{const.}}{q^i} =: C_0.$$

R.H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

$$\Rightarrow y \in \left[q^{?}(\mathsf{D}-\mathsf{D}) + \dots + q(\mathsf{D}-\mathsf{D}) + (\mathsf{D}-\mathsf{D})\right]$$

 $\Rightarrow \xi_n \in [q^{?+n}(D-D) + \cdots + q(D-D) + (D-D)]$ (because $t_i \in (D-D)$) $\Rightarrow \xi_n \in Y$.

 \therefore L.H.S. & R.H.S. $\Rightarrow \{\xi_n : n \geq 0\} \subseteq [-C_0, C_0] \cap Y$.

 $:: \mathsf{FTC} \Rightarrow Y \text{ has no accumulation point } \Rightarrow [-C_0, C_0] \cap Y \text{ is a finite set}$ $\therefore \{\xi_n : n \geq 0\}$ is also a finite set.

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of item(a)

 $\left| \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right| \Rightarrow \left[q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} \left(yq^n - t_1q^{n-1} - \dots - t_n \right) =: \xi_n \right].$

$$\begin{bmatrix} q & & & q^n & & \\ & & & & \\ & & & \end{bmatrix} q^n \sum_{n=1}^{\infty}$$

L.H.S.: $\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$

 $\Rightarrow y \in [q^{?}(D-D) + \cdots + q(D-D) + (D-D)]$

R.H.S.:
$$y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(D-D) + \dots + q(D-D) + (D-D) \right]$$

 $\Rightarrow \xi_n \in [q^{2+n}(D-D) + \cdots + q(D-D) + (D-D)]$ (because $t_i \in (D-D)$)

 $\Rightarrow \xi_n \in Y$.

This completes the proof of item(a).

 \therefore L.H.S. & R.H.S. $\Rightarrow \{\xi_n : n \geq 0\} \subseteq [-C_0, C_0] \cap Y$. :: FTC $\Rightarrow Y$ has no accumulation point $\Rightarrow [-C_0, C_0] \cap Y$ is a finite set

 $\therefore \{\xi_n : n \ge 0\}$ is also a finite set.

(a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set. (b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$.

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have

Proof of item(a)

 $\left| \frac{t_1}{q} + \dots + \frac{t_n}{q^n} + \sum_{n+1}^{\infty} \frac{t_i}{q^i} = y \right| \Rightarrow \left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \stackrel{\star}{=} (yq^n - t_1q^{n-1} - \dots - t_n) =: \xi_n \right|.$

L.H.S.: $\left| q^n \sum_{n+1}^{\infty} \frac{t_i}{q^i} \right| \leq \sum_{1}^{\infty} \frac{\text{const.}}{q^i} =: C_0.$

R.H.S.: $y \in Y = \bigcup_{\ell=0}^{\infty} \left[q^{\ell}(\mathsf{D} - \mathsf{D}) + \dots + q(\mathsf{D} - \mathsf{D}) + (\mathsf{D} - \mathsf{D}) \right]$

 $\Rightarrow y \in [q^{?}(D-D) + \cdots + q(D-D) + (D-D)]$

 $\Rightarrow \xi_n \in [q^{2+n}(D-D) + \cdots + q(D-D) + (D-D)]$ (because $t_i \in (D-D)$) $\Rightarrow \xi_n \in Y$.

 \therefore L.H.S. & R.H.S. $\Rightarrow \{\xi_n : n \geq 0\} \subseteq [-C_0, C_0] \cap Y$.

:: FTC $\Rightarrow Y$ has no accumulation point $\Rightarrow [-C_0, C_0] \cap Y$ is a finite set

 $\therefore \{\xi_n : n \ge 0\}$ is also a finite set.

This completes the proof of item(a).

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have

(a)
$$\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$$
 is a finite set.
(b) If $|A| > 1$, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \geq 0\}$ is a finite set.

(b) If
$$|A|>1$$
, then $\sigma_A(y)=\sum_{i=1}^\infty \frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

$$\frac{Yq^n - t_1q^{n-1} - \dots - t_n : n \ge 0}{\{yq^n - t_1q^{n-1} - \dots - t_n : n \ge 0\}}$$
 is a finite set

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A|>1$$
, then $\sigma_A(y)=\sum_{i=1}^\infty \frac{\sigma_A(t_i)}{A^i}$.

 $\Rightarrow \{\sigma_A(yq^n - t_1q^{n-1} - \cdots - t_n) : n \ge 0\}$ is a finite set

Proof of [item(a) \Rightarrow item(b)]

$$\{yq^n-t_1q^{n-1}-\cdots-t_n:\ n\geq 0\}$$
 is a finite set

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

 $\Rightarrow \{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n): n\geq 0\}$ is a finite set

Proof of [item(a) \Rightarrow item(b)]

$$\{yq^n-t_1q^{n-1}-\cdots-t_n:\ n\geq 0\}$$
 is a finite set

 $\Rightarrow |\sigma_A(yq^n - t_1q^{n-1} - \cdots - t_n)| < \text{const.}$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \dots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

$$\int ya^n - t \cdot a^{n-1} - \cdots - t \cdot n > 0$$

$$\{yq^n-t_1q^{n-1}-\cdots-t_n: n\geq 0\}$$
 is a finite set

$$\{yq^n - t_1q^{n-1} - \dots - t_n : n \ge 1\}$$

$$yq^n - t_1q^{n-1} - \cdots - t_n: n \ge$$

$$\{yq^n - t_1q^{n-1} - \dots - t_n : n \ge 0\}$$
 is a finite set $\Rightarrow \{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) : n \ge 0\}$ is a finite set

 $\Rightarrow |\sigma_A(yq^n - t_1q^{n-1} - \cdots - t_n)| \leq \text{const.}$

Therefore, $\left|\sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \cdots - \frac{\sigma_A(t_n)}{A^n}\right|$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A|>1$$
, then $\sigma_A(y)=\sum_{i=1}^\infty \frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

$$\{yq^n-t_1q^{n-1}-\cdots-t_n:\ n\geq 0\}$$
 is a finite set

$$yq^n - t_1q^{n-1} - \dots - t_n: n \ge 0$$

$$yq^n - t_1q^{n-1} - \dots - t_n: n \ge 0$$

$$yq^n - t_1q^{n-1} - \dots - t_n: n \ge 1$$

$$\begin{cases} yq - t_1q - \cdots - t_n : n \ge 0 \end{cases} \text{ is a finite set}$$

$$\Rightarrow \left\{ \sigma_A(yq^n - t_1q^{n-1} - \cdots - t_n) : n \ge 0 \right\} \text{ is a finite set}$$

$$\Rightarrow \left| \sigma_A(yq^n - t_1q^{n-1} - \cdots - t_n) \right| \le \text{const.}$$

Therefore, $\left| \sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n} \right|$ $= \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n} \right|$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

$$\{yq^n-t_1q^{n-1}-\cdots-t_n:\ n\geq 0\}$$
 is a finite set

$$yq^n - t_1q^{n-1} - \dots - t_n: n \ge 0$$

$$yq^n - t_1q^{n-1} - \dots - t_n: n \ge 0$$

$$\cdots - t_n: n \geq 0$$
 $n-1 - \cdots - t_m$

$$\cdots - t_n: n \ge 0$$

 $\Rightarrow \{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n): n\geq 0\}$ is a finite set

$$n \geq 0$$
 $\cdots - t_n$:

 $\Rightarrow \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)} \right| \le \text{const.}$ Therefore, $\left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A} \right| = \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n} \right| \le \frac{\text{const.}}{|A|^n}$

$$s = finite$$

 $s > 0$ is

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

 $= \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n} \right| \leq \frac{\mathsf{const.}}{\left|A\right|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$

(b) If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$.

Proof of [item(a) \Rightarrow item(b)]

$$yq^n - t_1q^{n-1} - \dots - t_n: n \ge 1$$

$$\left\{yq^n-t_1q^{n-1}-\cdots-t_n:\ n\geq 0\right\}$$
 is a finite set

 $\Rightarrow \{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n): n\geq 0\}$ is a finite set

 $\Rightarrow \left|\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)\right| \leq \text{const.}$

Therefore, $\left| \sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n} \right|$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

$$\{yq^n - t_1q^{n-1} - \dots - t_n : n \ge 0\} \text{ is a finite set}$$

 $\Rightarrow \{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n): n\geq 0\}$ is a finite set

$$\{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n):\ n\geq 0\}$$
 is a form $\{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n)\}$

$$\{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n):\ n\geq 0\}$$
 is a f $|\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n)|<\mathsf{const.}$

$$\Rightarrow |\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)| \le \text{const.}$$

$$\Rightarrow |\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)| \le \sigma_A(t_n)$$

$$\left|\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n)
ight| \leq ext{const.}$$
 erefore, $\left|\sigma_A(y)-rac{\sigma_A(t_1)}{t}-\cdots-rac{\sigma_A(t_n)}{t}
ight|$

Therefore,
$$\left| \sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n} \right|$$

Therefore,
$$\left| \sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n} \right|$$

Therefore,
$$\left| \sigma_A(y) - \frac{\sigma_A(v_1)}{A} - \dots - \frac{\sigma_A(v_n)}{A^n} \right|$$
 $\left| \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) \right| \leq \text{const.}$

$$= \left|\frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n}\right| \leq \frac{\mathsf{const.}}{|A|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$$

$$= \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n} \right| \le \frac{\mathsf{const.}}{\left|A\right|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$$

$$= \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n} \right| \le \frac{\text{const.}}{|A|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$$
Hence $\sigma_A(y) = \frac{\sigma_A(t_1)}{A} + \frac{\sigma_A(t_2)}{A^2} + \dots$

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A|>1$$
, then $\sigma_A(y)=\sum_{i=1}^{\infty}\frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

$$\{yq^n-t_1q^{n-1}-\cdots-t_n:\ n\geq 0\}$$
 is a finite set

$$\{yq^n-t_1q^{n-1}-\cdots-t_n:\ n\geq 0\}$$
 is a finite se

$$\forall q \quad t_1 q \quad t_n \cdot h \ge 0$$
 is a finite set $\forall q \quad t_n \cdot h \ge 0$ is a finite set $\forall q \quad t_1 q^n = t_1 q^{n-1} = \dots = t$.

$$\Rightarrow \left\{ \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) : n \ge 0 \right\} \text{ is a finite set}$$

$$\left\{ \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) : n \ge 0 \right\} \text{ is a}$$
$$\left| \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) \right| < \text{const.}$$

$$\Rightarrow \left| \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) \right| \cdot n \ge 0$$
 is a
$$\Rightarrow \left| \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) \right| \le \text{const.}$$

herefore,
$$\left| \sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n} \right|$$

 $\left| \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) \right|$ const.

Therefore,
$$\left|\sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n}\right|$$

Hence
$$\sigma_A(y) = \frac{\sigma_A(t_1)}{A} + \frac{\sigma_A(t_2)}{A^2} + \cdots$$

Therefore,
$$\left| \sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n} \right|$$

= $\left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n} \right| \le \frac{\text{const.}}{\left| A \right|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$

Q.E.D.

FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. We have (a) $\{yq^n - t_1q^{n-1} - \cdots - t_n : n \ge 0\}$ is a finite set.

(b) If
$$|A| > 1$$
, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proof of [item(a) \Rightarrow item(b)]

$$\int u e^{n} + e^{n-1} + \dots$$

 $\{yq^n-t_1q^{n-1}-\cdots-t_n: n>0\}$ is a finite set $\Rightarrow \{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n): n\geq 0\}$ is a finite set

$$\left\{\sigma_A(yq^n-t_1q^{n-1}-\cdots-t_n):\ n\geq 0\right\}$$
 is a

$$\{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) : n \ge 0\}$$
 is a $|\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)| < \text{const.}$

$$\Rightarrow \left| \sigma_A(yq^n - t_1q^{n-1} - \dots - t_n) \right| \leq \text{const.}$$

$$|\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)| \le \text{const.}$$

Therefore,
$$\left|\sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n}\right|$$

Therefore,
$$\left|\sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n}\right|$$

Therefore,
$$\left|\sigma_A(y) - \frac{\sigma_A(t_1)}{A} - \dots - \frac{\sigma_A(t_n)}{A^n}\right|$$

 $\left|\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)\right|$ const.

Therefore,
$$\left|\sigma_A(y) - \frac{1}{A} - \dots - \frac{1}{A^n}\right|$$

$$= \left|\frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A}\right| < \frac{\mathsf{const.}}{2} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1)$$

Therefore,
$$\left| \frac{\sigma_A(y) - \overline{A} - \cdots - \overline{A^n}}{A} \right|$$

$$= \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \cdots - t_n)}{A^n} \right| \leq \frac{\mathsf{const.}}{|A|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$$

$$= \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{\Delta^n} \right| \leq \frac{\mathsf{const.}}{|\Delta|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$$

$$= \left| \frac{\sigma_A(yq^n - t_1q^{n-1} - \dots - t_n)}{A^n} \right| \le \frac{\mathsf{const.}}{\left| A \right|^n} \to 0 \text{ as } n \to \infty \text{ (by } |A| > 1).$$

Hence $\sigma_A(y) = \frac{\sigma_A(t_1)}{4} + \frac{\sigma_A(t_2)}{42} + \cdots$.

Q.E.D.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing |A| < 1:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$:

Accordingly, we have a two-step strategy for showing
$$|A| \leq 1$$
:

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

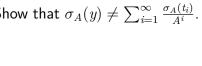
Accordingly, we have a two-step strategy for showing
$$|A| \leq 1$$
:
(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing |A| < 1:

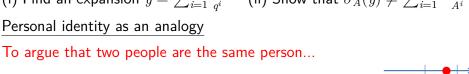
(i) Find an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t)}{A^i}$

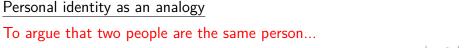
(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Personal identity as an analogy



and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing |A| < 1: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

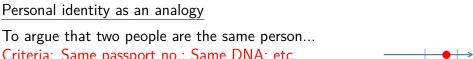




and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Criteria: Same passport no.; Same DNA; etc.

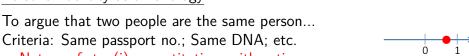


and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Personal identity as an analogy

 \sim Nature of step(i): quantitative, arithmetic.



and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Personal identity as an analogy

To argue that two people are the same person...

Criteria: Same passport no.; Same DNA; etc.

 \sim Nature of step(i): quantitative, arithmetic.

To argue that two people are NOT the same person...

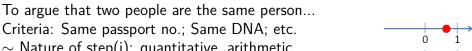
and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Personal identity as an analogy

 \sim Nature of step(i): quantitative, arithmetic.

To argue that two people are NOT the same person... Criteria: Different shapes; Occupying different places; etc.



and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Personal identity as an analogy

To argue that two people are the same person...

Criteria: Same passport no.; Same DNA; etc.

 \sim Nature of step(i): quantitative, arithmetic.

To argue that two people are NOT the same person... Criteria: Different shapes; Occupying different places; etc.

 \sim Nature of step(ii): qualitative, geometric.

Proposition 1 (Consequence of FTC)

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Personal identity as an analogy

Criteria: Same passport no.; Same DNA; etc.

 \sim Nature of step(i): quantitative, arithmetic.

To argue that two people are NOT the same person...

Criteria: Different shapes; Occupying different places; etc.

Nature of step(ii): qualitative, geometric.

... The geometry of $\{\sigma_A(\partial_i)\}_{i=0}^m$ plays a role in this problem.

Proposition 1 (Consequence of FTC)

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Accordingly, we have a two-step strategy for showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{g^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Personal identity as an analogy

To argue that two people are the same person...

Criteria: Same passport no.; Same DNA; etc. ~ Nature of step(i): quantitative, arithmetic.

To argue that two people are NOT the same person...

Criteria: Different shapes; Occupying different places; etc.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing |A| < 1:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma_i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda_i}$.

Method of step(i): a lazy algorithm

Proposition 1 (Consequence of FTC)

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y=\sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Method of step(i): a lazy algorithm

Electric switch box as an analogy...

Proposition 1 (Consequence of FTC)

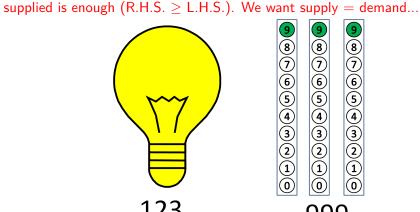
Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

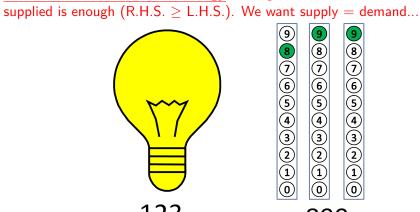
Method of step(i): a lazy algorithm

Electric switch box as an analogy...

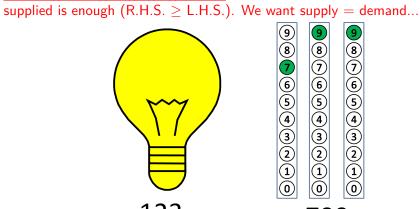
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



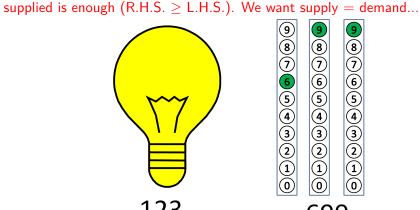
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



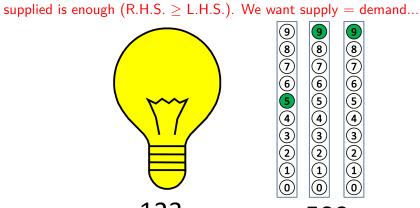
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



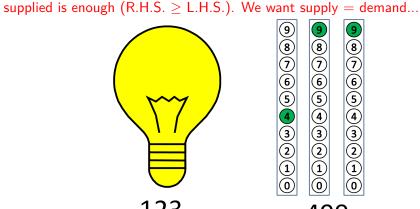
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



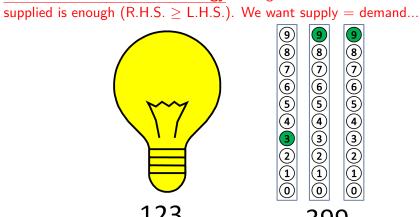
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



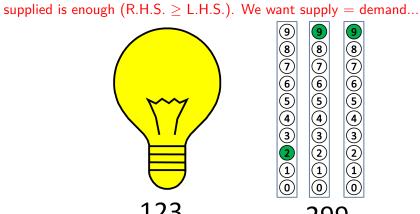
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



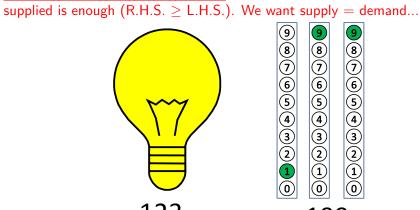
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



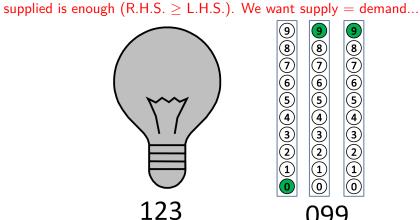
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



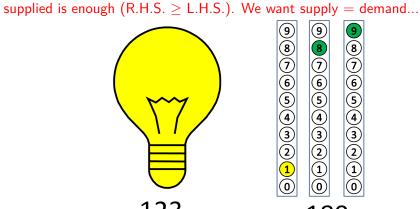
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



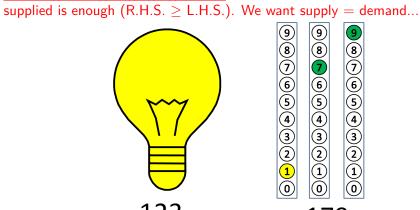
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



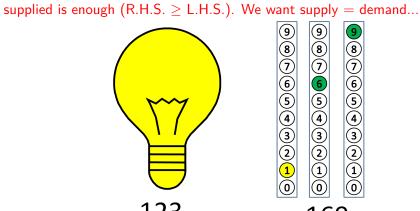
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



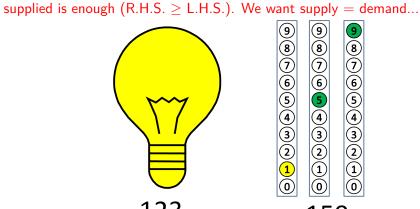
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

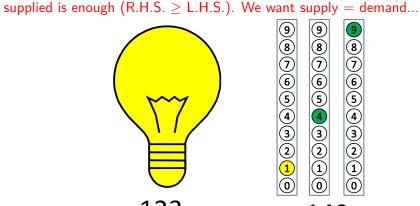


and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



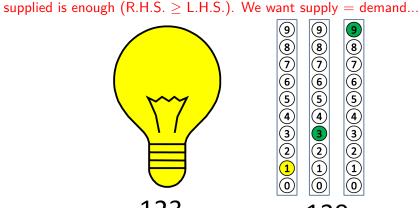
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Electric switch box as an analogy** The light bulb is on whenever energy



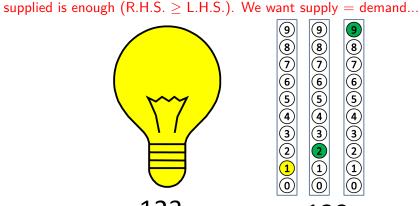
149

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:



and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

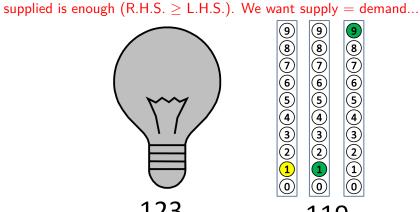
(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Electric switch box as an analogy The light bulb is on whenever energy



129

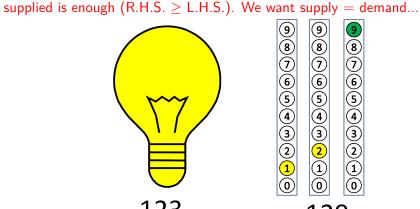
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Electric switch box as an analogy The light bulb is on whenever energy



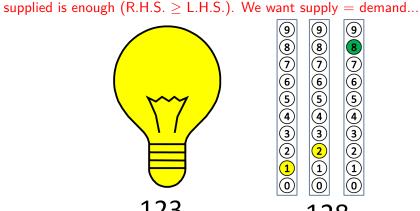
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Electric switch box as an analogy** The light bulb is on whenever energy



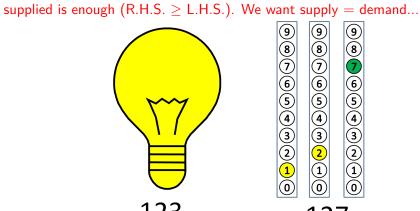
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Electric switch box as an analogy** The light bulb is on whenever energy



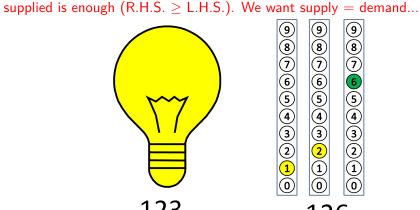
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Electric switch box as an analogy The light bulb is on whenever energy



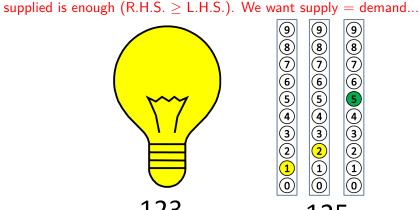
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Electric switch box as an analogy** The light bulb is on whenever energy



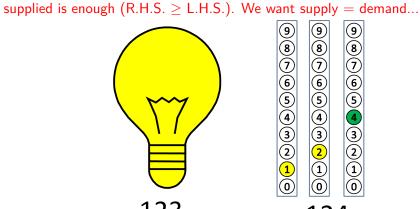
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Electric switch box as an analogy** The light bulb is on whenever energy



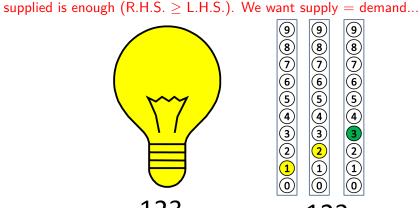
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Electric switch box as an analogy The light bulb is on whenever energy



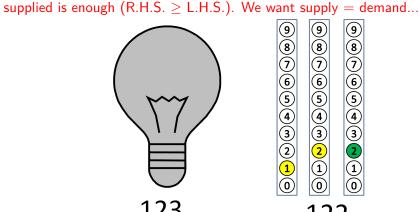
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Electric switch box as an analogy** The light bulb is on whenever energy



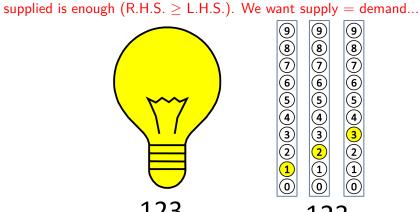
and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Electric switch box as an analogy The light bulb is on whenever energy



and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

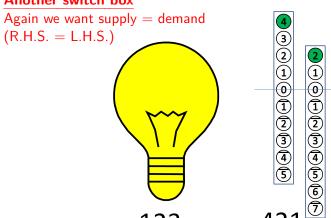
(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Electric switch box as an analogy The light bulb is on whenever energy



and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

 $(\overline{x} = -x)$

(i) Find an expansion
$$y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y)\neq\sum_{i=1}^{\infty}\frac{\sigma_A(t_i)}{A^i}$.



and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y)\neq\sum_{i=1}^{\infty}\frac{\sigma_A(t_i)}{A^i}$.

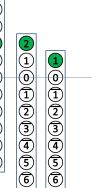
Another switch b

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Another switch box

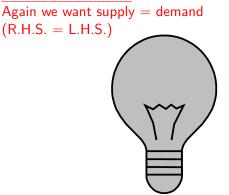
Another switch b

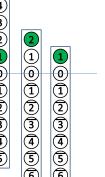


and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.

Another switch box

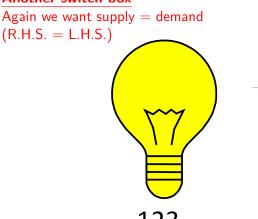




and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.

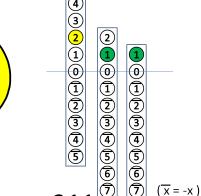
Another switch box



and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y)\neq\sum_{i=1}^{\infty}\frac{\sigma_A(t_i)}{A^i}$.

Again we want supply = demand (R.H.S. = L.H.S.)

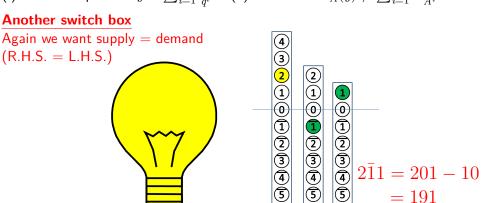


and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

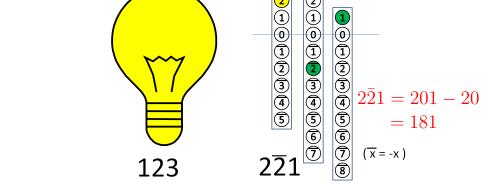
(i) Find an expansion $y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y)\neq\sum_{i=1}^{\infty}\frac{\sigma_A(t_i)}{A^i}$. Another switch box

Another switch b

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.



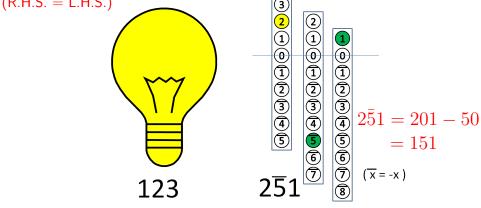
Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \ne \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Another switch box Again we want supply = demand (R.H.S. = L.H.S.)



Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$. **Another switch box** Again we want supply = demand (R.H.S. = L.H.S.)

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$. **Another switch box** Again we want supply = demand (R.H.S. = L.H.S.)

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \ne \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. Another switch box Again we want supply = demand (R.H.S. = L.H.S.)



Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$. **Another switch box** Again we want supply = demand (R.H.S. = L.H.S.) $2\bar{6}1 = 201 - 60$ = 141

 $(\overline{x} = -x)$

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$. **Another switch box** Again we want supply = demand (R.H.S. = L.H.S.)

 $2\overline{7}1 = 201 - 70$

= 131

 $(\overline{x} = -x)$

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$. **Another switch box**

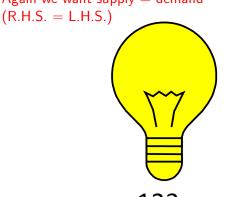
Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \leq 1$:

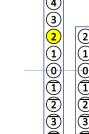
(i) Find an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Another switch box

Again we want supply = demand



Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.

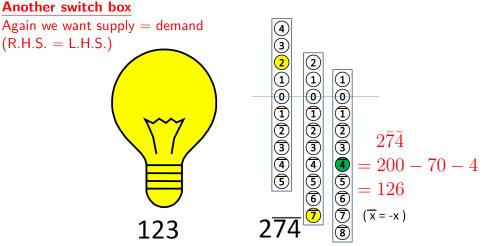


Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \ne \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.

Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.



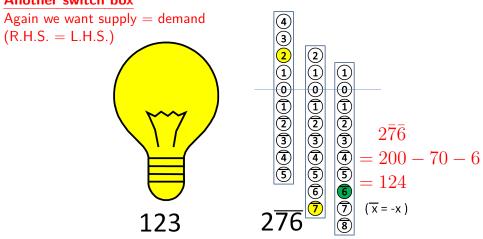
Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.

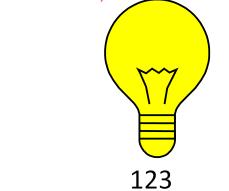
It gives a two-step strategy of showing $|A| \leq 1$:

gives a two-step strategy of showing
$$|A|$$

$$\begin{array}{c|c} \hline 1 \\ \hline 0 \\ \hline \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline = 200 - 70 - 5 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline \hline 8 \\ \hline \end{array}$$

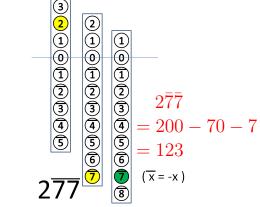
Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.





Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.

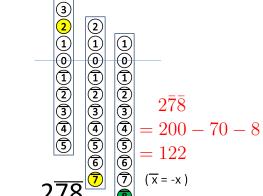
It gives a two-step strategy of showing $|A| \leq 1$:



Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

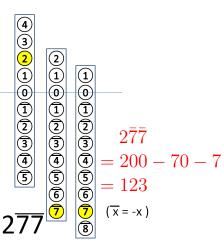
It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$. **Another switch box**



Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$.



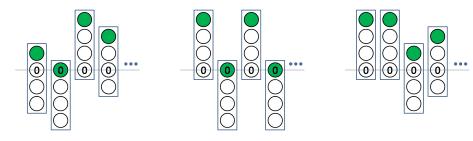
Proposition 1 (Consequence of FTC)

Let A be an algebraic conjugate of q_i and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{g^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion
$$y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y)\neq\sum_{i=1}^{\infty}\frac{\sigma_A(t_i)}{A^i}$.

Lazy algorithm for step(i)

So we can consider various switch boxes...



Proposition 1 (Consequence of FTC)

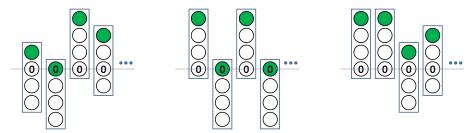
Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion
$$y=\sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Lazy algorithm for step(i)

So we can consider various switch boxes...



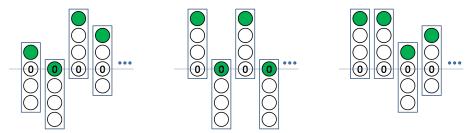
Hopefully they give rise to many expansions

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Lazy algorithm for step(i)

So we can consider various switch boxes...



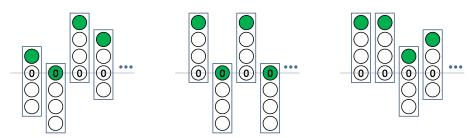
Hopefully they give rise to many expansions and some are useful in step(ii).

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Lazy algorithm for step(i)

So we can consider various switch boxes...



Hopefully they give rise to many expansions and some are useful in step(ii).

Step(i) \sim Lazy algorithm.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \leq 1$:

It gives a two-step strategy of showing
$$|A| \leq 1$$
:
(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing |A| < 1:

(i) Find an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

 $Step(i) \sim Lazy algorithm. Step(ii) \sim Geometry of <math>\{\sigma_A(\partial_i)\}_{i=0}^m$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion
$$y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y)\neq\sum_{i=1}^{\infty}\frac{\sigma_A(t_i)}{A^i}$.

 $Step(i) \sim Lazy algorithm. Step(ii) \sim Geometry of <math>\{\sigma_A(\partial_i)\}_{i=0}^m$.

Proposition 2 (Special case $\langle 3012 \rangle$)

We illustrate the idea by the following:

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

(i) Find an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.
Step(i) \sim Lazy algorithm. Step(ii) \sim Geometry of $\{\sigma_A(\partial_i)\}_{i=0}^m$.

We illustrate the idea by the following: **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let
$$A>1$$
 be a real algebraic conjugate of q .

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

We illustrate the idea by the following:
Proposition 2 (Special case
$$\langle 3012 \rangle$$
)

 $\mathsf{Step}(\mathsf{i}) \sim \mathsf{Lazy} \ \mathsf{algorithm}. \ \mathsf{Step}(\mathsf{ii}) \sim \mathsf{Geometry} \ \mathsf{of} \ \{\sigma_A(\partial_i)\}_{i=0}^m.$

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \leq 1$:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma_i^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Step(i)
$$\sim$$
 Lazy algorithm. Step(ii) \sim Geometry of $\{\sigma_A(\partial_i)\}_{i=0}^m$. We illustrate the idea by the following:

Proposition 2 (Special case $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3.

Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of a and

Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

It gives a two-step strategy of showing $|A| \leq 1$: (i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Step(i) \sim Lazy algorithm. Step(ii) \sim Geometry of $\{\sigma_A(\partial_i)\}_{i=0}^m$. We illustrate the idea by the following:

Proposition 2 (Special case $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that

$$\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2).$$

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing $|A| \le 1$:

(i) Find an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
 (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.
Step(i) \sim Lazy algorithm. Step(ii) \sim Geometry of $\{\sigma_A(\partial_i)\}_{i=0}^m$.

We illustrate the idea by the following:

Proposition 2 (Special case $\langle 3012 \rangle$ **)**

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that

$$\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2).$$

i.e. the order relation of $\{\sigma_A(\partial_i)\}_{i=0}^m$ is not $\langle 3012 \rangle$.

 $\mathsf{Step}(\mathsf{i}) \sim \mathsf{Lazy} \ \mathsf{algorithm}. \ \mathsf{Step}(\mathsf{ii}) \sim \mathsf{Geometry} \ \mathsf{of} \ \{\sigma_A(\partial_i)\}_{i=0}^m.$

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. It gives a two-step strategy of showing |A| < 1:

(i) Find an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma_i^i}$ (ii) Show that $\sigma_A(y) \neq \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case $\langle 3012 \rangle$)

We illustrate the idea by the following:

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that

$$\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2).$$

i.e. the order relation of $\{\sigma_A(\partial_i)\}_{i=0}^m$ is not $\langle 3012 \rangle$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

Proof

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

Proof It is proved by contradiction. Suppose on the contrary (3012) holds.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

Proof It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

Write $[i;j] := \partial_i - \partial_i$

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

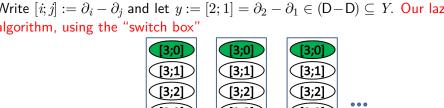
Proof It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

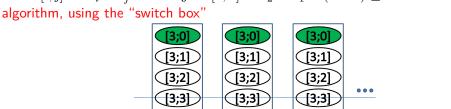
Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (\mathsf{D} - \mathsf{D}) \subseteq Y$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma_i^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let
$$A>1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m=3$. Then it is impossible that $\sigma_A(\partial_3)>\sigma_A(\partial_0)>\sigma_A(\partial_1)>\sigma_A(\partial_2)$.

Proof It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds. Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (D-D) \subseteq Y$. Our lazy





and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

Proof It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds. Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (D-D) \subseteq Y$. Our lazy algorithm, using the "switch box"

gives an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in \{[3,0],[3,1],[3,2],[3,3]\}$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (D-D) \subseteq Y$. Our lazy algorithm, using the "switch box" [3:1] [[3;1] [3;1]

 $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$ as a result of FTC (Prop. 1).

[3:2] [3;2] [3;2] [3:3] [3:3]

gives an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in \{[3; 0], [3; 1], [3; 2], [3; 3]\}$. So

[3;3] [3;3] [3;3] [3:2] [3:3] Solutions an expansion
$$u = \sum_{i=1}^{\infty} \frac{t_i}{2}$$
 where $t_i \in \{[3:0], [3:1], [3:2], [3:3]\}$ Solutions

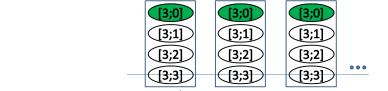
and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

on the one hand

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (D-D) \subseteq Y$. Our lazy algorithm, using the "switch box"



gives an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in \{[3; 0], [3; 1], [3; 2], [3; 3]\}$. So

 $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$ as a result of FTC (Prop. 1). Contradiction arises since

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

on the one hand $\langle 3012 \rangle$

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (D-D) \subseteq Y$. Our lazy algorithm, using the "switch box"

[3:1] [[3;1] [3;1] [3:2] [3;2] [3;2] [3:3] [3:3]

$$\begin{array}{c|cccc}
\hline
[3;1] & \hline
[3;1] & \hline
[3;1] & \hline
[3;2] & \hline
[$$

gives an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in \{[3; 0], [3; 1], [3; 2], [3; 3]\}$. So

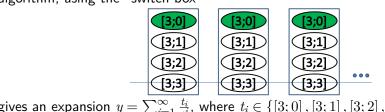
 $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$ as a result of FTC (Prop. 1). Contradiction arises since

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (D-D) \subseteq Y$. Our lazy algorithm, using the "switch box"



on the one hand $\langle 3012 \rangle \Rightarrow \text{L.H.S.} = \sigma_A(\partial_2) - \sigma_A(\partial_1) < 0$;

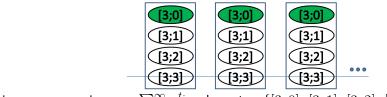
gives an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in \{[3; 0], [3; 1], [3; 2], [3; 3]\}$. So $\sigma_A(y) \stackrel{\star}{=} \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Lambda^i}$ as a result of FTC (Prop. 1). Contradiction arises since

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (D-D) \subseteq Y$. Our lazy algorithm, using the "switch box"



gives an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in \{[3; 0], [3; 1], [3; 2], [3; 3]\}$. So $\sigma_A(y) \stackrel{\star}{=} \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$ as a result of FTC (Prop. 1). Contradiction arises since

on the one hand $\langle 3012 \rangle \Rightarrow$ L.H.S.= $\sigma_A(\partial_2) - \sigma_A(\partial_1) < 0$; on the other hand

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

 $\langle 3012 \rangle \Rightarrow \sigma_A(t_i) = \sigma_A(\partial_3) - \sigma_A(\partial_7) > 0$

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

[3;3] [3;3] [3;3] gives an expansion
$$y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$$
, where $t_i\in\{[3;0]\,,[3;1]\,,[3;2]\,,[3;3]\}$. So

gives an expansion $y = \sum_{i=1}^{\infty} \frac{t_i}{a^i}$, where $t_i \in \{[3; 0], [3; 1], [3; 2], [3; 3]\}$. So

 $\sigma_A(y) \stackrel{\star}{=} \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$ as a result of FTC (Prop. 1). Contradiction arises since

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let
$$A > 1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m = 3$. Then it is impossible that $\sigma_{+}(\partial_{x}) > \sigma_{+}(\partial_{x}) > \sigma_{+}(\partial_{x}) > \sigma_{+}(\partial_{x})$

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds. Write $[i,j] := \partial_i - \partial_j$ and let $y := [2,1] = \partial_2 - \partial_1 \in (\mathsf{D} - \mathsf{D}) \subseteq Y$. Our lazy

[3;2] [3;2] **[3;2]**

gives an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
, where $t_i \in \{[3;0],[3;1],[3;2],[3;3]\}$. So

ives an expansion
$$y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$$
, where $t_i \in \{[3;0],[3;1],[3;2],[3;3]\}$. So $A_i(y) \stackrel{\star}{=} \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{q^i}$ as a result of ETC (Prop. 1). Contradiction arises since

 $\sigma_A(y) \stackrel{\star}{=} \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$ as a result of FTC (Prop. 1). Contradiction arises since on the one hand $\langle 3012 \rangle \Rightarrow \text{L.H.S.} = \sigma_A(\partial_2) - \sigma_A(\partial_1) < 0$; on the other hand

 $\langle 3012 \rangle \Rightarrow \sigma_A(t_i) = \sigma_A(\partial_3) - \sigma_A(\partial_2) > 0 \Rightarrow \text{R.H.S.} = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i} > 0.$

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let
$$A>1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m=3$. Then it is impossible that $\sigma_A(\partial_3)>\sigma_A(\partial_0)>\sigma_A(\partial_1)>\sigma_A(\partial_2)$.

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. **Proof** It is proved by contradiction. Suppose on the contrary $\langle 3012 \rangle$ holds.

Write
$$[i;j]:=\partial_i-\partial_j$$
 and let $y:=[2;1]=\partial_2-\partial_1\in (\mathsf{D}-\mathsf{D})\subseteq Y.$ Our lazy algorithm, using the "switch box"

[3:3] [3:3]

gives an expansion
$$y=\sum_{i=1}^{\infty}\frac{t_i}{q^i}$$
, where $t_i\in\{[3;0],[3;1],[3;2],[3;3]\}$. So

gives an expansion
$$y = \sum_{i=1}^{\infty} \frac{e_i}{q^i}$$
, where $t_i \in \{[3;0],[3;1],[3;2],[3;3]\}$. So $\sigma_A(y) \stackrel{\star}{=} \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$ as a result of FTC (Prop. 1). Contradiction arises since

 $\sigma_A(y) \stackrel{\star}{=} \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$ as a result of FTC (Prop. 1). Contradiction arises since

 $\langle 3012 \rangle \Rightarrow \sigma_A(t_i) = \sigma_A(\partial_3) - \sigma_A(\partial_2) > 0 \Rightarrow \text{R.H.S.} = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i} > 0.$ Q.E.D.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The

study of forbidden patterns and their avoidance

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case
$$\langle 3012 \rangle$$
)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

and
$$m=3$$
. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want $A>1$. The study of forbidden patterns and their avoidance allows us to give an example

study of forbidden patterns and their avoidance allows us to give an example of Φ

of Φ which satisfies the FTC

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Proposition 2 (Special case $\langle 3012 \rangle$)

Let
$$A>1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m=3$. Then it is impossible that $\sigma_A(\partial_3)>\sigma_A(\partial_0)>\sigma_A(\partial_1)>\sigma_A(\partial_2)$.

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The study of forbidden patterns and their avoidance allows us to give an example

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma_i^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A_i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let
$$A>1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m=3$. Then it is impossible that $\sigma_A(\partial_3)>\sigma_A(\partial_0)>\sigma_A(\partial_1)>\sigma_A(\partial_2)$.

So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The

study of forbidden patterns and their avoidance allows us to give an example of Φ which satisfies the FTC and the associated q is NOT a PV number.

Example

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let
$$A>1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m=3$. Then it is impossible that $\sigma_A(\partial_3)>\sigma_A(\partial_0)>\sigma_A(\partial_1)>\sigma_A(\partial_2)$.

So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The

study of forbidden patterns and their avoidance allows us to give an example of Φ which satisfies the FTC and the associated q is NOT a PV number.

Example m = 5, $q = 3 + \sqrt{3} \approx 4.732$.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let
$$A>1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m=3$. Then it is impossible that $\sigma_A(\partial_3)>\sigma_A(\partial_0)>\sigma_A(\partial_1)>\sigma_A(\partial_2)$.

So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The

So, "3012" is a forbidden pattern of
$$\{\sigma_A(\partial_i)\}_{i=0}^m$$
 if we want $A>1$. The study of forbidden patterns and their avoidance allows us to give an example of Φ which satisfies the FTC and the associated q is NOT a PV number.

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

So, "3012" is a forbidden pattern of
$$\{\sigma_A(\partial_i)\}_{i=0}^m$$
 if we want $A>1$. The study of forbidden patterns and their avoidance allows us to give an example of Φ which satisfies the FTC and the associated q is NOT a PV number.

Example m=5, $q=3+\sqrt{3}\approx 4.732$, and $\{\partial_i\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$

and $y = \sum_{i=1}^{\infty} \frac{t_i}{q^i}$, where $t_i \in (\mathsf{D} - \mathsf{D})$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$.

Let
$$A > 1$$
 be a real algebraic conjugate of q . Suppose Φ satisfies the FTC and $m = 3$. Then it is impossible that $\sigma_{+}(\partial_{x}) > \sigma_{+}(\partial_{x}) > \sigma_{+}(\partial_{x}) > \sigma_{+}(\partial_{x})$

and m=3. Then it is impossible that $\sigma_A(\partial_3)>\sigma_A(\partial_0)>\sigma_A(\partial_1)>\sigma_A(\partial_2)$. So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The study of forbidden patterns and their avoidance allows us to give an example

are given by
$$\frac{\partial_0 \ \partial_1 \ \partial_2 \ \partial_3 \ \partial_4 \ \partial_5}{0 \ 1 \ q/3 \ 2q/3 - 1 \ q - 2 \ q - 1} } \\ 0 \ 1 \ 1.577 \ 2.154 \ 2.732 \ 3.732 \ .$$

It corresponds to the allowed pattern "125034":

Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q_i and $y \in Y$. Suppose Φ satisfies the FTC

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The study of forbidden patterns and their avoidance allows us to give an example

of Φ which satisfies the FTC and the associated q is NOT a PV number. **Example** m=5, $q=3+\sqrt{3}\approx 4.732$, and $\{\partial_i\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$

It corresponds to the allowed pattern "125034": letting $A = 3 - \sqrt{3} \approx 1.267$.

Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{\Delta^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$) Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC

and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The

study of forbidden patterns and their avoidance allows us to give an example of Φ which satisfies the FTC and the associated q is NOT a PV number. **Example** m=5, $q=3+\sqrt{3}\approx 4.732$, and $\{\partial_i\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$

$$\frac{1}{0} \frac{1}{1.577} \frac{1}{2.154} \frac{1}{2.732} \frac{1}{3.732}$$
It corresponds to the allowed pattern "125034": letting $A = 3 - \sqrt{3} \approx 1.267$

It corresponds to the allowed pattern "125034": letting
$$A=3-\sqrt{3}\approx 1.267$$
, we have

ve have
$$(3) > (3) > (3) > (3) > (3)$$

$$(\partial_1) > \sigma_A(\partial_2) > \sigma_A(\partial_5) > \sigma_A(\partial_0) > \sigma_A(\partial_3)$$

 $\sigma_A(\partial_1) > \sigma_A(\partial_2) > \sigma_A(\partial_5) > \sigma_A(\partial_0) > \sigma_A(\partial_3) > \sigma_A(\partial_4)$

Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$.

So, "3012" is a forbidden pattern of
$$\{\sigma_A(\partial_i)\}_{i=0}^m$$
 if we want $A>1$. The study of forbidden patterns and their avoidance allows us to give an example of Φ which satisfies the FTC and the associated q is NOT a PV number.

Example m=5, $q=3+\sqrt{3}\approx 4.732$, and $\{\partial_i\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$ are given by

It corresponds to the allowed pattern "125034": letting
$$A=3-\sqrt{3}\approx 1.267$$
 , we have

we have
$$\sigma_1(\partial_1) > \sigma_1(\partial_2) > \sigma_1(\partial_1) > \sigma_1(\partial_2) > \sigma_1(\partial_2)$$

$$\sigma_A(\frac{\partial_1}{\partial_1}) > \sigma_A(\frac{\partial_2}{\partial_2}) > \sigma_A(\frac{\partial_5}{\partial_5}) > \sigma_A(\frac{\partial_0}{\partial_0}) > \sigma_A(\frac{\partial_3}{\partial_3}) > \sigma_A(\frac{\partial_4}{\partial_4})$$

$$\sigma_A(\partial_1) > \sigma_A(\partial_2) > \sigma_A(\partial_5) > \sigma_A(\partial_0) > \sigma_A(\partial_3) > \sigma_A(\partial_4)
1 > A/3 > A-1 > 0 > 2A/3-1 > A-2
1 > 0.422 > 0.267 > 0 > -0.154 > -0.732.$$

Proposition 1 (Consequence of FTC) Let A be an algebraic conjugate of q, and $y \in Y$. Suppose Φ satisfies the FTC

and $y = \sum_{i=1}^{\infty} \frac{t_i}{\sigma^i}$, where $t_i \in (D-D)$. If |A| > 1, then $\sigma_A(y) = \sum_{i=1}^{\infty} \frac{\sigma_A(t_i)}{A^i}$. **Proposition 2 (Special case** $\langle 3012 \rangle$)

Let A>1 be a real algebraic conjugate of q. Suppose Φ satisfies the FTC and m=3. Then it is impossible that $\sigma_A(\partial_3) > \sigma_A(\partial_0) > \sigma_A(\partial_1) > \sigma_A(\partial_2)$. So, "3012" is a forbidden pattern of $\{\sigma_A(\partial_i)\}_{i=0}^m$ if we want A>1. The

study of forbidden patterns and their avoidance allows us to give an example of Φ which satisfies the FTC and the associated q is NOT a PV number. **Example** m=5, $q=3+\sqrt{3}\approx 4.732$, and $\{\partial_i\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$

are given by
$$\frac{\partial_0}{\partial_1} \begin{vmatrix} \partial_1 & \partial_2 & \partial_3 & \partial_4 & \partial_5 \\ 0 & 1 & q/3 & 2q/3 - 1 & q - 2 & q - 1 \end{vmatrix}$$

It corresponds to the allowed pattern "125034": letting
$$A=3-\sqrt{3}\approx 1.267$$
, we have

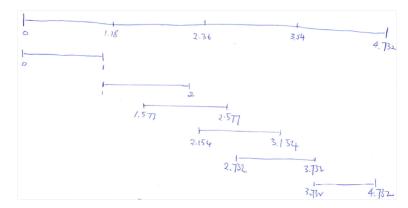
It corresponds to the allowed pattern "125034": letting
$$A=3-\sqrt{3}\approx 1.267$$
 we have

we have
$$\sigma_{+}(\partial_{1}) > \sigma_{+}(\partial_{2}) > \sigma_{+}(\partial_{1}) > \sigma_{+}(\partial_{2}) > \sigma_{+}(\partial_{2}) > \sigma_{+}(\partial_{2})$$

Example m=5, $q=3+\sqrt{3}\approx 4.732$, and $\left\{\partial_i\right\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$ are given by $\partial_0\mid\partial_1\quad\partial_2\quad\partial_3\quad\partial_4\mid\partial_5$

0		_	9	-		
0	1	q/3	2q/3 - 1	q-2	q-1	
0	1	1.577	2.154	2.732	3.732	•

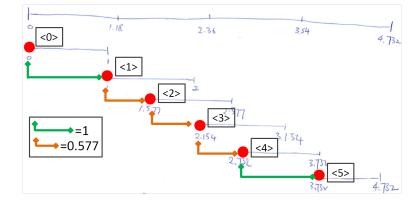
We end by visualizing it. When $\ell=0$, $\left[q^\ell \mathsf{D}+\cdots+q\mathsf{D}+\mathsf{D}\right]$ gives the following.



Example m=5, $q=3+\sqrt{3}\approx 4.732$, and $\{\partial_i\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$ are given by $\partial_0\mid\partial_1\mid\partial_2\mid\partial_2\mid\partial_3\mid\partial_3\mid\partial_3\mid\partial_4\mid\partial_5$

00	01	02	0.3	\circ_4	0.5	
		/	2q/3 - 1	-		
0	1	1.577	2.154	2.732	3.732	•

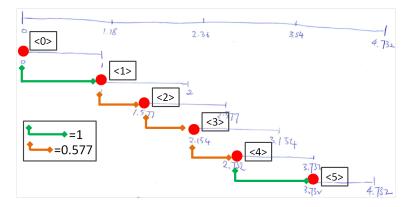
We end by visualizing it. When $\ell=0$, $\left[q^\ell D+\cdots+qD+D\right]$ gives the following. That is, using the shorthand $\langle i\rangle:=\partial_i$, we have



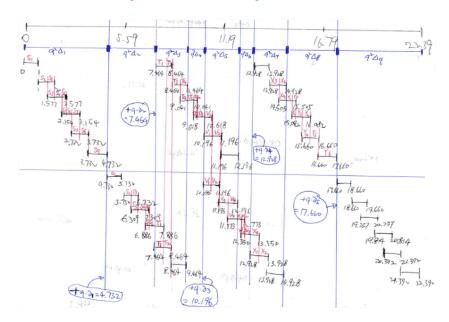
Example m=5, $q=3+\sqrt{3}\approx 4.732$, and $\{\partial_i\}_{i=0}^m$ with $0<\partial_{i+1}-\partial_i\leq 1$ are given by $\partial_0\mid\partial_1\quad\partial_2\quad\partial_3\quad\partial_4\mid\partial_5$

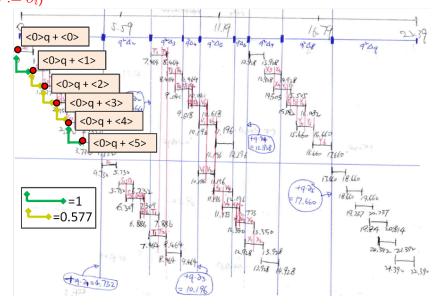
$-2 \mid q-1$	32 3.732
2q/3 - 1 q - 2	2.154 2.732
q/3	1 577
L	
1	7

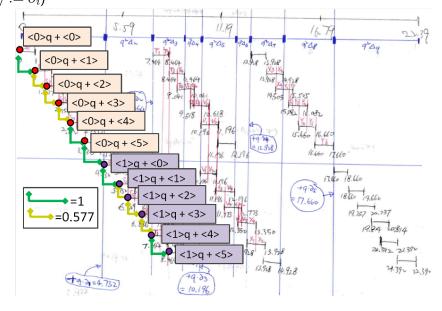
We end by visualizing it. When $\ell=0$, $\left[q^\ell \mathsf{D}+\cdots+q\mathsf{D}+\mathsf{D}\right]$ gives the following. That is, using the shorthand $\langle i \rangle:=\partial_i$, we have

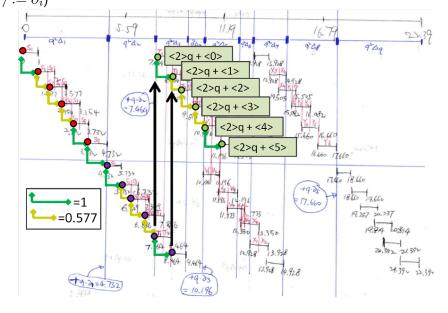


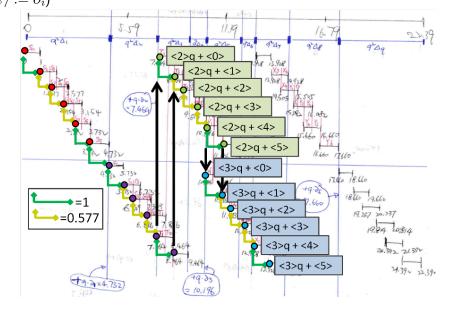
Example When $\ell = 1$, $\left[q^{\ell} \mathsf{D} + \dots + q \mathsf{D} + \mathsf{D} \right]$ gives:

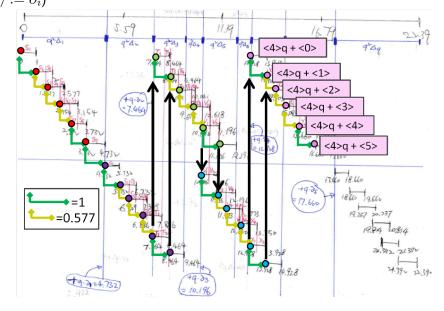


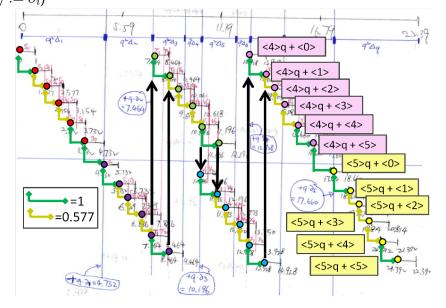


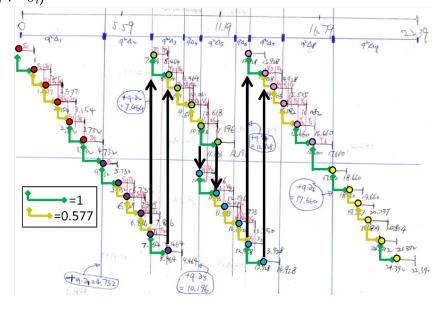


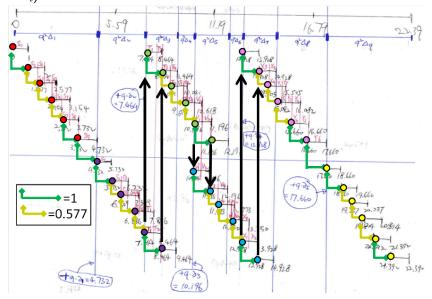




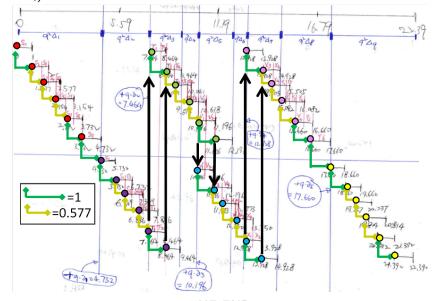








-THE END-



-THE END-